
Gradually Typed Languages Should Be Vigilant!

OLEK GIERCZAK, Northeastern University, USA

LUCY MENON, Northeastern University, USA

CHRISTOS DIMOULAS, Northwestern University, USA

AMAL AHMED, Northeastern University, USA

In gradual typing, different languages perform different dynamic type checks for the same program even

though the languages have the same static type system. This raises the question of whether, given a gradually

typed language, the combination of the translation that injects checks in well-typed terms and the dynamic

semantics that determines their behavior sufficiently enforce the static type system of the language. Neither

type soundness, nor complete monitoring, nor any other meta-theoretic property of gradually typed languages

to date provides a satisfying answer.

In response, we present vigilance, a semantic analytical instrument that defines when the check-injecting

translation and dynamic semantics of a gradually typed language are adequate for its static type system.

Technically, vigilance asks if a given translation-and-semantics combination enforces the complete run-time
typing history of a value, which consists of all of the types associated with the value. We show that the standard

combination for so-called Natural gradual typing is vigilant for the standard simple type system, but the

standard combination for Transient gradual typing is not. At the same time, the standard combination for

Transient is vigilant for a tag type system but the standard combination for Natural is not. Hence, we clarify
the comparative type-level reasoning power between the two most studied approaches to sound gradual typing.

Furthermore, as an exercise that demonstrates how vigilance can guide design, we introduce and examine

a new theoretical static gradual type system, dubbed truer, that is stronger than tag typing and more faithfully

reflects the type-level reasoning power that the dynamic semantics ofTransient gradual typing can guarantee.

CCS Concepts: • Software and its engineering→ Semantics.

Additional Key Words and Phrases: gradual typing, semantics, logical relations, natural, transient

1 VIGILANCE, A NEW ANALYTICAL INSTRUMENT FOR GRADUAL TYPING
Gradual typing exhibits an impressive variety. While industrial approaches tend to ignore types

after static type checking, academic ones prioritize soundness and translate types into different

forms of checks. Furthermore, how these checks behave varies greatly from design to design.
1
As

a notable point of contrast, languages that adhere to Natural gradual typing [Matthews and Findler

2009; Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2006] translate types to contract-enforcing

proxies; while languages that adhere to Transient gradual typing [Vitousek et al. 2017] simply

inject and perform so-called dynamic tag checks at strategic spots in a program. Recently, lan-

guage designers have even been experimenting with ways to combine both approaches to gradual

typing in a single language [Greenman 2022; Greenman et al. 2022]. This variety has a pragmatic

background: sound gradual typing often incurs prohibitive performance costs [Greenman et al.

2019b], thus different design points derive from different ways of resolving the tradeoff between

performance and guarantees. What this design space lacks, though, is a toolbox for analyzing what

checks are necessary for type-based guarantees.

In response, this paper contributes vigilance, a new semantic analytical instrument for gradual

typing. Vigilance captures an intuitive fact; when a language designer tweaks the translation from

types to checks and/or the dynamics of a language, but leaves the static type system as is, parts

1
See Greenman et al. [2023] for a detailed overview of the landscape.

Authors’ addresses: Olek Gierczak, Northeastern University, Boston, USA, gierczak.o@northeastern.edu; Lucy Menon,

Northeastern University, Boston, USA, semiotics@ccs.neu.edu; Christos Dimoulas, Northwestern University, Evanston,

USA, chrdimo@northwestern.edu; Amal Ahmed, Northeastern University, Boston, USA, amal@ccs.neu.edu.

HTTPS://ORCID.ORG/0009-0002-8850-0984
HTTPS://ORCID.ORG/0009-0002-9583-4448
HTTPS://ORCID.ORG/0000-0002-9338-7034
HTTPS://ORCID.ORG/0000-0001-7424-572X
https://orcid.org/0009-0002-8850-0984
https://orcid.org/0009-0002-9583-4448
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0001-7424-572X

125:2 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

of the types of a program may go unchecked, which can invalidate standard type-based reasoning

principles.
2
If that is the case, there is an alternative type system that the modified language actually

enforces, which can serve as the basis of type-based optimizations and refactorings. Vigilance reifies

this adequate design point: a combination of translation and semantics is vigilant for a type system

if the combination enforces all the types ascribed to the values produced during the evaluation

of an expression.

Vigilance sends a pragmatic signal to language designers. When the translation and semantics of

a language are not vigilant for its type system, the designer may want to consider a type systemwith

less precise types, either as an alternative to the original one, or as the basis of semantics-preserving

optimizations and IDE tools. Conversely, when the translation and semantics are vigilant for the

language’s type system, the language designer can use vigilance as a compass to find either a

stronger type system, or a translation-and-semantics combination that results in fewer checks. En

route to achieving these goals, vigilance offers language designers the instrument to determine

whether the translation and dynamics are (in)adequate for the statics of a language.

Vigilance builds on prior research efforts to create such an instrument for gradual typing [Green-

man et al. 2023; Greenman and Felleisen 2018; Greenman et al. 2019a; Siek et al. 2015a; Tobin-

Hochstadt and Felleisen 2006; Vitousek et al. 2017; Wadler and Findler 2009] and improves on them.

Specifically, vigilance subsumes two desired properties for gradual typing: type soundness and

complete monitoring [Dimoulas et al. 2012; Greenman et al. 2019a]. Vigilance is stronger than both

syntactic type soundness and its semantic counterpart: it asks not only that a program value behaves

according to its type, but also to its run-time typing history. Consequently, vigilance enables devel-
opers to rely on types while they reason about dynamically typed code, which type soundness does

not entail [Greenman et al. 2023, 2019a]. Vigilance is also both more fine-grained and stronger than

complete monitoring: (i) it can positively or negatively characterize translation-semantics combina-

tions other than the standard one of theNatural approach; and (ii) it entails that the gradually typed
language performs the meaningful checks at the right times. §2 compares vigilance with type sound-

ness and complete monitoring through concrete examples, and thus, demonstrates vigilance’s value

in a realistic setting. As we discuss in detail in §6, compared to other previously proposed desired

properties for gradual typing, vigilance is not intended to replace them but to complement them.

Besides developing vigilance, in this paper we evaluate vigilance:

• Revisiting the literature, we perform a side-by-side analysis of the two most-studied sound

approaches to gradual typing, Natural and Transient. Specifically, we focus on the canonical

constituents of Natural and Transient gradual typing from the literature. For the Natural
approach, these are: a simple type system, a Higher-Order (HO) translation that places

proxy-generating casts in the appropriate places in a gradually typed program, and the

so-called Natural semantics that uses the proxies to enforce type-like properties at runtime.

For the Transient approach, these are: a simple type system, a First-Order (FO) translation
that places tag-enforcing casts and checks in the appropriate places in a gradually typed

program, and the so-called Transient semantics that performs the corresponding tag en-

forcement at runtime. Inspired by prior syntactic analytical work [Greenman et al. 2023;

Greenman and Felleisen 2018; Greenman et al. 2019a], in order to make an apples-to-apples

comparison between the two seemingly radically different approaches, we devise a uniform

framework that distills the differences between the two approaches to differences between

their corresponding semantics. Hence, we show that to compare the two approaches, it

2
Hereafter, type system refers to a language’s static type system, translation to the translation that turns types to checks,

and semantics to the language’s dynamic semantics.

Gradually Typed Languages Should Be Vigilant! 125:3

suffices to compare the Natural and Transient semantics.
3
. Using our framework, we con-

firm prior results about the relative guarantees that the canonical formulations of the two

approaches offer. That is, we prove that the combination of the HO translation and the

Natural semantics is vigilant for the simple type system, while the combination of the FO
translation and the Transient semantics is not.

• Going beyond prior work, we establish a surprising new fact about Natural and Transient.
Namely, we show that even though the FO-Transient combination is vigilant for a tag
type system, the HO-Natural one is not. Even though, from the perspective of the prior

syntactic analysis [Greenman et al. 2023; Greenman and Felleisen 2018; Greenman et al.

2019a], Natural gradual typing is stronger than Transient gradual typing, from the semantic

perspective of vigilance this is not the case; each corresponds to a different adequate design

point. In particular, while the prior syntactic analysis seems to support the intuitive view that

the Transient approach to gradual typing “forgets” some necessary checks, vigilance shows

that the semantic reality is subtler than that. To enforce the types of function arguments, the

Natural approach relies on checks that theHO translation places carefully at application sites

that constitute the boundary between less and more precisely-typed expressions. In contrast,

theTransient approach adopts an open-world stance and translated functions partially check
their arguments themselves, which offers some protection in every context. Put differently,

vigilance reveals an innate non-trivial distinction between the two approaches, which affects

the assumptions programmers can make when programming with one or the other.

• Seeking to understand the reasoning power of the Transient approach, we use vigilance to
perform a design exercise. Specifically, we construct an alternative translation (Flow) and a

flow-sensitive type system, which we dub truer, that assigns to programs more precise types

than the tag type system. We prove that the the combination of the Flow translation and the

Transient semantics is vigilant for the truer type system, and hence, we establish that the

tag checks that the Transient semantics perform are sufficient to deduce more type-level

facts about program values than their type tag. Furthermore, to demonstrate the potential

benefits revealed by the exercise, we use the truer type system to justify and prove correct

an optimization that elides unnecessary dynamic type checks.

Outline. The remainder of the paper is organized as follows. §2 describes the necessary back-

ground, and the key ideas behind vigilance. §3 presents the formal linguistic framework of the

paper and §4 builds on that to define vigilance formally and prove that theHO-Natural combination

is vigilant for simple typing. §5 develops the tag and truer type systems, shows that FO-Transient
is vigilant for tag typing and truer typing, and proves that truer renders unnecessary some of the

checks that the Transient semantics performs. §6 describes related work not already covered in

§2, and discusses future directions and some concluding thoughts.

2 MOTIVATION AND THE MAIN IDEAS BY EXAMPLE
This section informally discusses the two approaches to gradual typing, Natural and Transient,
that are the focus of this paper in a unified framework that makes an apples-to-apples comparison

possible. The discussion, which revolves around a series of examples, also clarifies the shortcom-

ings of prior work on type soundness and complete monitoring, and serves as the substrate for

a high-level introduction of the technical ideas behind vigilance. In subsequent sections, we give

these ideas a formal treatment.

3
Because of our uniform framework, we can use Natural and Transient to refer to both the two semantics and the overall

approaches, i.e., the type system together with a translation and a semantics. When the distinction matters, we use the

words “approach” and “semantics” to clarify.

125:4 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

2.1 Natural and Transient Gradual Typing in one Framework
At first look, Natural and Transient seem vastly different. Natural relies on proxies that are diffi-

cult [Greenman et al. 2019b] (though not impossible [Kuhlenschmidt et al. 2019]) to implement in a

performant manner, while Transient offers a lightweight alternative where tag checks are in-lined

at the start of function bodies, and around elimination forms. These differences raise the problem

of a fair comparison between the two approaches. As we discuss briefly in §1, to overcome this

obstacle, we follow Greenman and Felleisen [2018] and construct a linguistic setting that minimizes

their differences to just the essentials. First, we decouple the syntax and static type system of the

source language, which we refer to as the Gradually Typed Language (GTL) and which is based

on the gradually typed 𝜆-calculus [Siek and Taha 2006], from the meaning of its programs. GTL

programs obtain meaning via type-preserving translations to an intermediate language that comes

with both casts and type assertions, (ICTL).4 Second, we define a unified translation, Uni, from GTL

to ICTL that consolidates the differences between theHO and FO translations from the literature. In

particular, Uni injects in the image of a GTL program all the casts that both Natural and Transient
require, and the type assertions that are specific to Transient. Third, we construct a parameterized

reduction semantics for ICTL that, for different parameters, matches either the Natural or the
Transient semantics. Specifically, depending on the parameters, the casts and type assertions of an

ICTL program either generate proxies, or simply perform tag checking, or act as trivial no-ops. As

a result, this uniform setting allows us to study the differences between the Natural and Transient
approaches described in the literature by focusing on the differences between the Natural and
Transient variants of the ICTL semantics. In other words, for a given GTL program, only the

evaluation of its ICTL image differs between the two approaches; everything else is the same.

let segment = 𝜆 img. (. . .)
let segment_png =

𝜆 (img :PNG) → PNG×PNG.
segment img

Fig. 1. Dynamically Typed Argument
for a Typed Parameter

Fig. 1 gives a taste of our GTL as the starting point of

the discussion of the Natural approach. The snippet defines
segment_png, which expects as its argument a PNG and then

applies segment, which has no type annotations. Even though
the static checker for the canonical simple gradual type sys-

tem does not have at its disposal the necessary type informa-

tion to derive that segment indeed has type PNG→PNG×PNG,
it accepts the program as well typed. To compensate for the

partial static type checking, the HO translation of segment_PNG injects a cast around segment
from the dynamic type ∗5 to the expected type PNG→ PNG × PNG. Under the Natural semantics,

the role of the cast is to check whether segment behaves as a function from PNGs to pairs of PNGs
whenever it is called. Hence, the Natural cast checks that segment is a function and wraps it in a

proxy that defers the remaining checks until segment_png is called.

The same GTL program behaves differently under the Transient approach. After type checking,
similar to the HO translation, the FO one injects a cast around segment, however this cast is much

weaker. The Transient cast only checks that segment is a function and does not create a proxy. To

counter for the absence of the proxy, the FO translation further re-writes the code and injects type

assertions to ensure that the results of any calls to segment_png are pairs.

While our exposition of the example above alludes to two different translations — one with

higher-order casts that produce proxies (HO), and one with first-order casts and type assertions (FO)
— as mentioned above, our framework employs a consolidated translation Uni from GTL to ICTL.

4
ICTL, our Intermediate Cast-and-Type-assertion Language, plays the role of cast calculi from the literature. Since the term

“cast calculus” is overloaded and different variants have subtly different features, we introduce new nomenclature to avoid

conflating terminology.

5
Code without annotations implicitly has type ∗.

Gradually Typed Languages Should Be Vigilant! 125:5

Library Typed Wrapper User Code

let segment = 𝜆 img. (. . .)
let crop = 𝜆 img. (. . .)
. . .

let crop_png =

𝜆 (img :PNG) → PNG. crop img

let segment_png =

𝜆 (img :PNG) → PNG×PNG.
segment img

let segment_png_small =

𝜆 (img :PNG) → PNG×PNG.
let (𝑎,𝑏) = segment img

(crop_png 𝑎, crop_png 𝑏)

let write_img = 𝜆 img, path. (. . .)
. . .

let foreground =

(segment_png my_png) [0]
let foreground_small =

(segment_png_small my_png) [0]
write_img foreground "fg.png"

write_img foreground_small "fgs.png"

. . .

Fig. 2. Using a Typed Wrapper for a Dynamically Typed Image Library

The ICTL image of a GTL program has both casts and type assertions whose behavior depends on

the parameterization of the ICTL reduction rules. As a result any ICTL program can run either in a

Natural or a Transient manner: in the first case the casts behave as higher-order proxies and the as-

sertions are no-ops; in the second, casts and assertions perform immediate first-order checks. Hence,

the differences in theNatural andTransient behavior of the running GTL example boil down exactly

to how the Natural and Transient semantics treat casts and assertions, which enables the apples-to-

apples comparison of the two approaches. Interestingly, for the example in this section, even though

the Transient semantics performs just lightweight tag checks and uses no proxies, it seems to entail

the same type-level facts for the example as the Natural semantics with its costly proxies.

2.2 The Gap Between Statics and Dynamics for Transient
The actual difference in the type-level guarantees offered by Transient and Natural becomes clear

when dynamically typed code uses a function with type other than *. Greenman et al. [2019a]

demonstrate the issue with a scenario where a library with a typed interface is in fact dynamically

typed and the interface is nothing more than a thin veneer of possibly misleading type annotations.

Such scenarios are particularly important when languages first obtain gradual type systems; adding

a type interface on top of a dynamically typed library offers to language designers a way to quickly

grow the set of “typed” libraries, and hence, it encourages the further use of the gradual type system.

But, when developers switch to these “typed” libraries in the process of type migrating their code,

they may be surprised. Spefically, phrased in terms of our uniform framework, for such a scenario,

the casts and assertions injected through the Uni translation of a GTL program to ICTL may not

result in all the checks that are necessary to validate that the dynamically typed library adheres to

its type interface; it all depends on the specific semantics of the ICTL. As a result, optimizations or

refactorings that one might expect to hold if the types were enforced may not be valid.

To make the discussion concrete, fig. 2 conveys the scenario from Greenman et al. [2019a] in our

GTL. In this example, dynamically typed code (right) uses segment_png and segment_png_small
from a seemingly typed library (center) to split a PNG into an uncropped and cropped foreground

and background respectively, and then writes each foreground to a file. However, the typed library

is just a thin typed wrapper around the dynamically typed implementation (left). In more detail,

the actual dynamically typed implemantation provides two functions: crop, which crops images

to a particular size, and segment which segments an image into a pair of a “foreground” and a

“background” image. The typed library imports these two functions, and re-exports them: crop_png
is a wrapper for crop, and segment_png and segment_png_small are wrappers for segment.
The scenario behaves differently under the Natural and Transient ICTL semantics. The Uni

translation introduces casts at uses of segment_png and segment_png_small in the user code, but

importantly, since the user code is dynamically typed, Uni does not inject any type assertions for

125:6 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

the results of the projections in the body of foreground and foreground_small. Hence, the actual
dynamic type checks during the evaluation of the example depend exactly on how the semantics

treats the aforementioned injected casts. In the Natural semantics, the casts result in proxies that

inspect the results of the function calls, ensuring the type from the annotation; in the Transient
approach, the cast devolves to just a simple tag check of whether the result is a pair. As a result,

in contrast to the Natural semantics the Transient semantics does not check whether the first

component of the result of (segment_png my_png) is a PNG.

2.3 Type Soundness is Not Enough
At first glance, this difference between the Natural and the Transient semantics seems like an issue

that type soundness should clarify. Type soundness does distinguish between the two [Greenman

and Felleisen 2018], but falls short of fully characterizing the difference. Intuitively, in Transient,
the use context of a function is expected to inspect the results of such a dynamically typed function

via type assertions at call sites to make sure the function behaves as its type describes. Since, for

the final result of a program there is no use context, syntactic type soundness for Transient can say

little about programs that produce functions. In contrast, in Natural, the proxy around a function

allows syntactic type soundness to establish that the function’s results adhere to their type.

In formal terms, syntactic type soundness says that if a source program is well typed at type 𝜏

then when its ICTL image evaluates to a value with the Natural semantics, the value also has type

𝜏 . In contrast, when the ICTL image is run with the Transient semantics, the result value has a type

that matches the tag of 𝜏 (i.e. its top type constructor), but that is not necessarily exactly equal to 𝜏

(tag soundness). Hence, syntactic type soundness seems to reveal that the choice of translation and

ICTL semantics affects the predictive power of the GTL’s simple type system.

However, syntactic type soundness stops short of explaining whether either the combination of

the translation and theNatural or Transient ICTL semantics results in all the checks the GTL simple

type system relies on. Syntactic type soundness only connects the type of the source program

with the type of the translated ICTL program’s result. Therefore, all intermediate types that do

not contribute to that goal are immaterial. The running scenario demonstrates this situation. First,

given the dynamically-typed nature of the user code, all occurrences of segment_png on the

rightmost portion of the fig. are considered by the type system to be of type ∗, which is inhabited

by all values, not just functions from PNGs to pairs of PNGs. So type soundness says nothing about

these occurrences of segment_png and segment_png_small directly. Second, one cannot rely on

the compositional nature of the typing rules of the type system and type soundness to deduce

transitively some more precise type-level information for these occurrences than ∗. In fact, the rules

for the simple type system, type soundness, and the details of the Uni translation and the Natural
semantics all together are necessary to reason that (segment_png my_png) needs to behave as

a pair of PNGs, despite appearing in a dynamically typed context. Type soundness alone only

guarantees information according to the ∗ type of the application, so a semantics that “forgets” the

cast injected by the translation around segment_png in the untyped context would still be sound.

This last point shows exactly why the syntactic tag soundness guarantee for Transient is not
sufficient to explain what type-level reasoning power Transient offers. As discussed above, in

Transient the avoidance of proxies leads to tag soundness. However, the Forgetful [Greenberg 2015]
and Amnesic [Greenman et al. 2019a] variants of the Natural semantics do create the same proxy

as Natural but then remove them when proxied values are used in dynamically typed contexts to

reduce the running time and memory cost from proxies. In terms of the example, segment_png
obtains the expected proxy, which is then removed when the function is used in foreground.
However, Forgetful and Amnesic are as syntactically type sound as Natural, even though their

net effect in terms of checks is the same as that of Transient. From the perspective of syntactic

Gradually Typed Languages Should Be Vigilant! 125:7

type soundness, in dynamically typed code, it does not matter whether the type of segment_png is

enforced. That is, we must reason beyond syntactic type soundness to ensure types are meaningful.

Unfortunately, semantic type soundness, the next step up from syntactic type soundness, has a

similar deficiency. Semantic type soundness asks that a value behaves according to its latest type,
the one the current context expects. Hence, it also ignores intermediate types.

2.4 Complete Monitoring is Not Enough
An attempt to deal with the issue of intermediate unchecked types is complete monitoring for

gradual types [Greenman et al. 2023, 2019a], which adapts the notion of complete monitoring from

work on contract systems [Dimoulas et al. 2012]. The starting point for complete monitoring is a

collection of semantics for an ICTL, i.e., different semantics with the same syntax and the same

simple type system. The goal is to determine which of the semantics enforces the types of ICTL

programs completely. However, complete monitoring establishes a weaker property. Intuitively, an

ICTL semantics is a complete monitor if it “has complete control over every type-induced channel

of communication between two components.” [Greenman et al. 2023].

Formally, complete monitoring relies on a brittle notion of ownership of program expressions and

values by components. In detail, in the complete-monitoring framework, components are encoded

as label annotations on expressions; all expressions that “belong” to the same component have the

label of the component. A system of axioms determines how values may accumulate labels, (and

therefore component-owners), as they ‘flow” from one component to another during evaluation.

Another set of axioms describes how values lose labels due to checks from type casts. Given this

formal setup, complete monitoring becomes preservation of a single-ownership invariant for all

values during the evaluation of a program: a value can either have a single label, or multiple that

are separated by type casts. Hence, the single-ownership property entails that the ICTL semantics is

“in control of” all flows of values from one component to another as it imposes checks that regulate

such flows. In that sense, the Natural semantics is a complete monitor, but Transient is not.
Back to the scenario in Fig. 2, since the Natural semantics is a complete monitor, every flow

is checked. Assuming that segment and segment_png have labels 𝑙1 and 𝑙2 respectively, as the

first flows into the second, segment_png becomes segment_png = (cast {PNG -> PNG × PNG}
segment𝑙1)𝑙2 . When segment_png is applied in a dynamically typed context with label 𝑙3, the call

to segment_png becomes (cast { * } segment_png𝑙2)𝑙3 . While the expression has multiple

labels, they are separated by a proxy, and hence, the semantics maintains the single-owner policy.

Furthermore, when segment_png is applied, checks discharge the ownership labels for the result

of the function and allow it to obtain the label of its calling component.

Note though, that the description above is intentionally vague about what checks exactly have to

happen at each point in the evaluation where complete monitoring prescribes a check. This is be-

cause the formal framework of complete monitoring does not specify that much: an ICTL semantics

would still be a completemonitor if all checks were equivalent to a no-op. Hence, a language designer

cannot reason about what types a semantics enforces based solely on complete monitoring.

In summary, while complete monitoring offers a dimension that type soundness lacks, i.e., that

checks should mediate the interactions of components, it is not a solution to determining whether

a translation and ICTL semantics combination is adequate for the GTL type system. First, it is

coarse-grained; it only gives a negative answer for any other semantics except Natural. Importantly,

it cannot shed light on the guarantees the Transient approach offers. Second, it requires defining

a brittle syntactic system of annotations, along with an instrumented semantics that needs to be

adapted in an ad hoc manner from one approach to another. Finally, it entails a rather weak relation

between the type system of the ICTL and its semantics.

125:8 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

2.5 Enter Vigilance
Intuitively, a GTL should come with reliable type enforcement, so that types can be used for

reasoning. Returning to the example in Fig. 2, under either the Natural or Transient approach, the
result of segment_png my_png should live up to its return type of pairs of PNGs.

To capture this intuition, this paper develops a new semantic property called vigilance. The goal
of vigilance is to describe how the combination of the translation and ICTL semantics impacts the

enforcement of the types in a GTL program. Vigilance serves to identify when the behavior of

translated GTL programs are not a good match for the expectations implied by the statics of the

GTL, and goes beyond (semantic) type soundness and complete monitoring. By requiring that the

translation and semantics enforce every type obligation a value acquires during the evaluation of

a program, vigilance considers flow-sensitive and compositional type information that
type soundness ignores. And, instead of only specifying the location of checks as in complete

monitoring, vigilance ensures and allows for exactly enough dynamic enforcement to
enforce the type-based properties of programs. And by varying the type system, and the

combination of translation and semantics, and thereby varying the typing histories for expressions

and their enforcement, vigilance is applicable to more systems than complete monitoring.
When a translation and semantics is not vigilant for a type system, then there are some types

that the type system requires, but the semantics is insufficient to ensure. In this case, a language

designer can weaken the type system exactly where the translation and semantics is insufficient.

And when a translation and semantics is vigilant for a type system, then there may be some stronger

type system that the translation and semantics will still enforce. By providing these signals to

language designers, vigilance acts as a compass to guide language design. In §2.7 and §2.8, we

use vigilance as a compass for Transient and demonstrate an alternative design point.

Vigilance: Preliminaries. While the discussion so far centers around the simple type system, our

goal is to pinpoint what combinations of translations and ICTL semantics are (in)adequate for what

GTL type systems. For that, we need to overcome two technical challenges. First, our framework

needs to accommodate different GTL type systems and connect the types of GTL expressions under

each type system with the types of the ICTL values they produce when run. Second, the framework

needs to keep track of the types ICTL values collect when run.

For the first challenge, for each type system that we wish to consider, vigilance asks for a type-
preserving translation that maps from well-typed GTL programs to well-typed ICTL programs.

Since the translation is type preserving, we reduce the relationship between the translation, ICTL

semantics and GTL types to the relationship between ICTL semantics and ICTL types.

For the second challenge, vigilance relies on naming values in order to associate with each value

a list of types it must satisfy, so we employ an allocating ICTL operational semantics. Specifically,

we allocate every value 𝑣 that arises during evaluation (including the results of casts and assertions)

to a fresh label ℓ in a value log Σ, and modify elimination forms to act on labels ℓ to eliminate

the value associated with the label Σ(ℓ). On every cast that evaluates to a label, the type from the

cast is also stored. Unlike complete monitoring, the allocating semantics in our framework are

just a system for naming values and tracking types over a predefined semantics, which is mostly

mechanical. Moreover, while one can use the type information associated with every intermediate

value to perform checks (as we do in the semantics defined in §3), this is by no means necessary

for vigilance, and one can have a completely distinct enforcement mechanism. In other words, the

collected type information is effectively ghost state (originally auxiliary variables [Owicki and Gries
1976]), and the allocating semantics maintains a trivial erasure into the non-allocating one.

Vigilance: Technical Definition. After equipping our ICTL with an allocating semantics, we define

vigilance using a (step-indexed) unary logical relation that models ICTL types 𝜏 as sets of ICTL values

Gradually Typed Languages Should Be Vigilant! 125:9

𝑣 that inhabit them. In contrast to a typical step-indexed logical relation for type soundness [Appel

and McAllester 2001], vigilance comes with an extra index, the typing history Ψ, which can be

thought of as a value-log typing. Specifically, the typing history Ψ is a log that collects the types on

each cast or assertion in the program that a particular value has passed through. While semantic

type soundness says that a language is semantically type sound if and only if any well-typed

expression 𝑒 : 𝜏 “behaves like” 𝜏 , vigilance asks that 𝑒 also “behaves” according to its typing history.

We say that the semantics of an ICTL are vigilant for a type system if in any well-formed typing

history Ψ (capturing potential casts and assertions from a context), the translation of 𝑒 behaves like

𝜏 . The latter means that, if evaluating 𝑒 produces a label ℓ (as well as a potentially larger typing

history Ψ′, capturing casts and assertions present in 𝑒), then Σ(ℓ) not only behaves like 𝜏 (in the

conventional sense), but also like all of the types in Ψ′ (ℓ).
In summary, an ICTL semantics is vigilant for an ICTL type system and GTL translation when

any well-typed GTL expression 𝑡 at type 𝜏 translates to an ICTL expression 𝑒 that behaves like 𝜏

according to the vigilance logical relation.

Vigilance: a Recipe. The above discussion implies a step-by-step recipe for applying vigilance to

a gradual typing approach:

(1) Define a GTL, an ICTL and their type systems.

(2) Define a type-preserving translation from the GTL to the ICTL.

(3) Define an allocating semantics for the ICTL.

(4) Define the vigilance logical relation for the ICTL.

(5) Attempt to prove the fundamental property of the vigilance relation.

(6) If the proof fails, retry after adjusting the GTL and ICTL type systems, the type-preserving

relation, or the checks that the semantics of the ICTL performs. Changes to the type system

may require an adjustment to the vigilance relation so that it reflects the semantics of types

that correspond to the adjusted type system.

Constructing the vigilance relation is the most involved step of the recipe. However, the vigilance

relation extends a standard type soundness relation, and the required extensions for the typing

history for a new linguistic setting only asks for similar “semantic thinking” as that needed for

defining the soundness relation itself. We provide a high-level discussion of typing histories

through an example in the remainder of this section, and the full formal details for how they can be

incorporated in a soundness logical relation is in §4. The remainder of the section, and §5 formally,

also demonstrate two different ways the pieces of our framework can be adjusted when a first

attempt to prove the fundamental property for the vigilance relation fails.

As a final remark herein, a contributing factor to the complexity of the formal development in

this paper is not due to vigilance itself. Instead, the complexity comes from the fact that we use

vigilance as a tool for comparing Natural and Transient. In particular, as we discuss in §2.1, in order

to make a meaningful, apples-to-apples, comparison we have to carefully craft our GTL and ICTL

so that they can support both Natural and Transient while eliminating their superficial differences.

If a comparison is not the goal, one can avoid the design of a unified framework and simply focus

on the steps of the vigilance recipe.

2.6 Vigilance: By Example
A concrete discussion about vigilance requires an illustration of the contents of the typing history

of a value. To that end, we analyze the evaluation of the example in Fig. 3. The example condenses

the scenario in Fig. 2 as a single-component program in our GTL. In particular, just as in the

scenario, the crop_png function is a typed wrapper around the dynamically typed crop function,

which the user code applies to the image my_png. The resulting cropped image is written to file

125:10 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

"my.png". Different from previous examples and for presentation purposes only, the example

comes with partial label annotations. Specifically, we write (𝑒)𝑙 to denote an expression 𝑒 annotated

let crop = 𝜆 img. (. . .)
let crop_png = 𝜆 (img :PNG) → PNG. (crop img)𝑙1
write_img (crop_png (my_png)l0)𝑙2 "my.png"

Fig. 3. Example to Illustrate Labels and Typing History

with a label 𝑙 that uniquely identifies the value

𝑒 evaluates to. In other words, the labels are

a presentation device that acts as a layer of

indirection so that we can refer to program

values and relate them with types.

Analyzing the evaluation of the example from the perspective of typing history justifies why

writing the cropped version of my_png to the file as an image is a reasonable choice. In particular,

consider the typing histories of my_png before, during and after the call to crop_png, which
correspond to labels 𝑙0, 𝑙1 and 𝑙2 respectively. The image originates in dynamically typed code and

has label 𝑙0. That label is associated with just the type obligation ∗ in the typing history of the value.

When the value flows through crop_png, its new label 𝑙1 accumulates the obligation PNG on top of

the obligation ∗ it inherits from 𝑙0. Finally, after cropping, the image returns to dynamically typed

code with label 𝑙2, which is associated with the latest obligation ∗ in addition to obligation PNG and

∗ from 𝑙1. As a result, if the statics and dynamics of the language enforce the typing history for

𝑙2, the image meets the obligation PNG, and therefore can be safely written to the file as an image

without any format checks.

It is worth noting that the above discussion does not depend on how the semantics of the ICTL

performs checks, but only on whether the typing history of 𝑙2 is enforced. Consequently, any

combination of statics, translation and dynamics that enforces the typing history enables the

described typed-based reasoning. Vigilance generalizes this point: when a translation-semantics

combination is vigilant for a type system, every value produced during the evaluation of a program

satisfies its typing history, and hence code that uses a value can safely assume that much. For

example, the example in Fig. 2 shows how the simple type system, the Uni translation and the

Natural semantics work together to enforce the typing history of all values; the calls to segment_png
behave not only according to type ∗, but also, according to type PNG→PNG × PNG. In contrast, the

same is not true for the simple type system, the Uni translation and the Transient semantics.

2.7 Vigilance: An Examination of Transient
Since the combination of the Uni translation and the Transient semantics is not vigilant for the

standard simple type system, we investigate: for what type system is the combination of Uni and
Transient vigilant? An initial answer, which confirms prior work on Transient and tag soundness,

is that one such type system ascribes type tags (top-level type constructors) to expressions rather

than types. Hence, this tag type system accepts programs that have imprecise types, which shows

the difference between what the simple type system promises and what the Uni translation and

Transient semantics seems to achieve.

However, the Transient approach has deeper type-level reasoning than tag soundness suggests.

The typing history, which is central to vigilance, makes this additional power plain. Consider again

the scenario in Fig. 2. As described before, the scenario uses a dynamically typed image library

that provides two functions: crop, which crops images to a particular size, and segment which

segments an image into a pair of a “foreground” and a “background” image. The typed image

library provides three typed wrappers of these functions as segment_png, segment_png_small
and crop_png. However, in the case of segment_png_small, the typed wrapper does a bit more

than just acting as a veneer of types; it uses crop_png to reduce the sizes of the pair of images

that segment produces. Since the Uni translation and Transient semantics result in tag checks for

pair projections, the Transient approach should guarantee the return type of segment_png_small,
not just ∗×∗. This conclusion is a direct consequence of the fact that the combination of Uni and

Gradually Typed Languages Should Be Vigilant! 125:11

Transient is vigilant for the tag type system; vigilance entails that Transient checks that the results
of the calls to crop_png in the body of segment_png_small are PNGs. Hence, one can deduce the

result of segment_png_small has indeed type PNG×PNG. In conclusion, there should be a translation,
such that its combinations with Transient should be vigilant for a stronger type system than the

tag one, namely one which recognizes segment_png_small has return type PNG×PNG.

2.8 Vigilance: Towards Truer Transient Types
Building on the above insight, as a design exercise, we use vigilance as a guide towards a revised

type system and type-preserving translation. The new truer type system makes limited use of union

and intersection types in order to reflect in the types of expressions the outcomes of Transient
casts and assertions injected by the new Flow translation.

Importantly, the truer type system showcases how vigilance can benefit language designers.

They can start from an adequate design point, such as the variant of the Transient approach with a

tag type system, and, with vigilance as a guide, find others. If a new adequate design point involves

a more precise type system, such as the truer one, the designer may use it as part of IDE and

refactoring tools, or for optimizing the dynamics of the language. For instance, a consequence of

truer is that some of the checks that are necessary so that the translation and Transient semantics

is vigilant for the tag type system can be elided in a provably correct manner when pairing the

Flow translation and Transient semantics with the truer type system. For example, the truer type

system can stitch together type information from the type assertions on the results of the calls

to png_crop in the body of segment_png_small to deduce statically that segment_png_small
indeed has a type that precisely matches its type annotation (rather than that it simply returns a pair

that should be checked further at run time). Moreover, this precise truer type makes unnecessary

a type assertion on the outcome of the left-pair projection that gets bound to foreground; it is
statically known that it is a PNG. To formally establish the above, in §5.4 we use the truer type

system to eliminate unnecessary transient checks in a semantics- and vigilance-preserving manner.

2.9 Technical Contributions
The main technical contribution of this paper is vigilance as an analytical tool for gradual typing.

Simple Tag

Uni-Natural ✓ (Thm. 4.1) × (Thm. 5.6)

Uni-Transient × (Thm. 4.3) ✓ (Thm. 5.4)

The table on the right summarizes results from

our comparative analysis of the well studied

Natural and Transient approaches. When the

cell contains a ✓, that combination of transla-

tion and semantics is vigilant for that type system; otherwise it is not. While §1 presents our results

in terms of the HO-Natural and FO-Transient combinations, as we discuss throughout §2, Uni
consolidates HO and FO. In particular, when an expression is translated according to Uni, the HO
can be recovered by erasing the type assertions that are specific to the Transient approach, which
is exactly what the Natural ICTL semantics achieves by treating them as no-ops. Hence, the Uni-
Natural and Uni-Transient correspond to the standard presentation of the Natural and Transient
approaches respectively in the literature. Importantly, and distinctly from the literature, the four

results establish that tag typing is not strictly semantically weaker than the simple type system;

tag typing allows a function to be applied in more contexts, which is well behaved when under the

Uni and Transient combination, but not under the Uni-Natural combination. Transient’s checks
protect the function from these contexts while Natural’s do not. Hence, vigilance characterizes the

Transient approach positively in a way that distinguishes it from the Natural approach.
Besides comparing existing points in the design space of gradual typing, the paper also shows

how vigilance can guide the search for new points. In this spirit, the final result of the paper, which

is not shown in the table, takes the positive characterization of the Transient approach one step

125:12 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

𝑡 F 𝑥 | 𝑛 | 𝑖 | True | False | 𝜆(𝑥 :𝜏) → 𝜏 ′ . 𝑡 | ⟨𝑡, 𝑡⟩ | if 𝑡 then 𝑡 else 𝑡
| binop 𝑡 𝑡 | 𝑡 𝑡 | fst 𝑡 | snd 𝑡

𝜏 F Nat | Int | Bool | 𝜏×𝜏 | 𝜏→𝜏 | ∗

𝑒 F 𝑥 | 𝑛 | 𝑖 | True | False | 𝜆(𝑥 :𝜏) . 𝑒 | ⟨𝑒, 𝑒⟩ | if 𝑒 then 𝑒 else 𝑒
| binop 𝑒 𝑒 | app{𝜏} 𝑒 𝑒 | fst{𝜏} 𝑒 | snd{𝜏} 𝑒 | cast {𝜏 ⇐ 𝜏} 𝑒

binop F sum | quotient
𝑛 ∈ N , 𝑖 ∈ Z

Fig. 4. Syntax of 𝜆GTL (top) and 𝜆ICTL (bottom)

further. It demonstrates that the Flow-Transient combination is vigilant for the truer type system

(Thm. 5.10), which enables the elision of unnecessary dynamic checks (Thm. 5.12).

3 FROM A GTL TO AN ICTL WITH TWO SEMANTICS
The top portion of Fig. 4 presents the syntax of 𝜆GTL, our GTL, which as described in §2 follows

the approach of Greenman and Felleisen [2018] and the gradually-typed 𝜆-calculus [Siek and

Taha 2006]. Most of the features of 𝜆GTL are the same as the corresponding features of a simply-

typed 𝜆-calculus extended with constants, pairs and their relevant elimination forms. The one

unconventional syntactic form is that for anonymous functions. In particular, anonymous functions

come with type annotations that describe both the type of their arguments and the type of their

result. The type annotations 𝜏 range over simple types with the addition of ∗, the dynamic type,

which, as usual in the gradual typing setting, indicates imprecise or missing type information. For

example, the expression 𝜆(𝑥 : ∗→ ∗) → ∗. 𝑡 represents an anonymous function that consumes

functions and may return anything.

Since 𝜆GTL expressions 𝑡 do not evaluate directly but are translated to an ICTL, before delving

into the type checking and evaluation of 𝜆GTL expressions, we discuss briefly the syntax of 𝜆ICTL,

our ICTL. The bottom portion of Fig. 4 shows the syntax of 𝜆ICTL expressions 𝑒 . Its features

correspond to those of 𝜆GTL with a few important differences. First, functions 𝜆(𝑥 :𝜏). 𝑒 come with

type annotations for their arguments but not their results. Second, pair projections and function

applications also have type annotations. Third, 𝜆ICTL has a new syntactic form compared to 𝜆GTL:

cast expressions. Specifically, cast {𝜏1 ⇐ 𝜏2} 𝑒 represents a cast from type 𝜏2 to 𝜏1 for the result of

expression 𝑒 . In other words, while in 𝜆GTL all type annotations are on functions, in 𝜆ICTL, they

are spread over applications, pair projections, function parameters, and casts. This is because the

first three are the syntactic loci in a program that correspond to “boundaries” between pieces

of code that can have types with different precision according to the type system of the GTL.

Hence, the translation injects type assertions and casts exactly at these spots. The type annotations

correspond to the type assertions that the Transient approach relies on to make up for the weak

checks performed by Transient casts (the notation and separation of assertions from casts comes

from Greenman and Felleisen [2018]). After all, as we discuss in §2, 𝜆ICTL aims to accommodate

both Natural and Transient in a uniform linguistic setting.

Fig. 5 presents the Uni translation of 𝜆GTL expressions 𝑡 to 𝜆ICTL expressions 𝑒 with a single

judgment Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 . A 𝜆GTL function translates at its type annotation 𝜏→ 𝜏 ′ if its body
translates at some type 𝜏 ′′. To bridge the potential gap between 𝜏 ′′ and 𝜏 ′, the translation of the

function produces a 𝜆ICTL function whose body is wrapped in a cast from 𝜏 ′′ to 𝜏 ′, if needed.
Specifically, metafunction [𝜏 ↙ 𝜏 ′]𝑒 inserts a cast around 𝑒 when 𝜏 is compatible with 𝜏 ′ (written
𝜏 ∼ 𝜏 ′) but not a subtype of 𝜏 ′. The metafunction [𝜏 ↙ 𝜏 ′]𝑒 is designed so that subtyping allows

implicit (no cast) type conversion, while compatibility allows explicit (casted) type conversion.
Subtyping is defined in the canonical way: Nat is a subtype of Int, functions are contravariant,
and pairs are covariant. Compatibility is the reflexive and symmetric relation that rules out non-

convertible type casts, or type casts that will always error. Unlike standard definitions, compatibility

Gradually Typed Languages Should Be Vigilant! 125:13

Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 (Unified Translation, selected rules)

Γ, (𝑥 :𝜏) ⊢Uni 𝑡 : 𝜏 ′′ ⇝ 𝑒

Γ ⊢Uni 𝜆(𝑥 :𝜏) → 𝜏 ′ . 𝑡 : 𝜏→𝜏 ′

⇝ 𝜆(𝑥 :𝜏) . ([𝜏 ′ ↙ 𝜏 ′′]𝑒)

Γ ⊢Uni 𝑡1 : 𝜏→𝜏 ′ ⇝ 𝑒1
Γ ⊢Uni 𝑡2 : 𝜏 ′′ ⇝ 𝑒2

Γ ⊢Uni 𝑡1 𝑡2 : 𝜏 ′
⇝ app{𝜏 ′} 𝑒1 ([𝜏 ↙ 𝜏 ′′]𝑒2)

[𝜏 ↙ 𝜏 ′]𝑒 =

𝑒 if 𝜏 ′ ⩽: 𝜏

cast {𝜏 ⇐ 𝜏 ′} 𝑒
if 𝜏 ′ ̸⩽: 𝜏
and 𝜏 ∼ 𝜏 ′

Γ ⊢Uni 𝑡1 : ∗⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏 ′ ⇝ 𝑒2

Γ ⊢Uni 𝑡1 𝑡2 : ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑒1) ([∗ ↙ 𝜏 ′]𝑒2)

Γ ⊢Uni 𝑡𝑏 : Bool ⇝ 𝑒𝑏 Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni if 𝑡𝑏 then 𝑡1 else 𝑡2 : 𝜏1 ⊔̃ 𝜏2 ⇝ if 𝑒𝑏 then ([𝜏1 ⊔̃ 𝜏2 ↙ 𝜏1]𝑒1) else ([𝜏1 ⊔̃ 𝜏2 ↙ 𝜏2]𝑒2)

𝜏 ∼ 𝜏 ′ (Compatibility)

𝜏 ∼ ∗ Nat ∼ Int

𝜏0 ∼ 𝜏2 𝜏1 ∼ 𝜏3
𝜏0×𝜏1 ∼ 𝜏2×𝜏3

𝜏0 ∼ 𝜏2 𝜏1 ∼ 𝜏3
𝜏0→𝜏1 ∼ 𝜏2→𝜏3 𝜏 ∼ 𝜏

𝜏 ∼ 𝜏 ′

𝜏 ′ ∼ 𝜏

𝜏 ⩽: 𝜏 ′ (Subtyping)

Nat ⩽: Int

𝜏0 ⩽: 𝜏2 𝜏1 ⩽: 𝜏3

𝜏0×𝜏1 ⩽: 𝜏2×𝜏3
𝜏2 ⩽: 𝜏0 𝜏1 ⩽: 𝜏3

𝜏0→𝜏1 ⩽: 𝜏2→𝜏3 𝜏0 ⩽: 𝜏0

Fig. 5. The Unified Uni Translation From 𝜆GTL to 𝜆ICTL

includesNat ∼ Int to allow programmers to freely convert between Naturals and Integers, and have

the translation insert appropriate checks. Our compatibility is a symmetric version of consistent

subtyping [Bañados Schwerter et al. 2021]
6
.

Conditionals translate in a recursive manner. The type of the conditional is the consistent subtype

join ⊔̃ of the types of its two branches. The consistent subtype join definition is standard [Bañados

Schwerter et al. 2021], and gives the least upper bound of the types with respect to subtyping, as

well as more precise types in place of ∗. To bridge the potential gap between the type of the branch

and the consistent join, the translation may wrap each branch in a cast with the same metafunction

as above. Translated applications obtain type assertions for the return type of the applied function,

along with (possible) casts around the argument expression that make sure the domain of the

applied function jives with the type of the provided argument.

Fig. 6 gives rules for the typing judgment for 𝜆ICTL: Γ ⊢sim 𝑒 : 𝜏 — the sim annotation indicates the

standard simply typed ICTL type system, to distinguish it from the tag and tru systems we present

later. In general, the type system of 𝜆ICTL is straightforward and closely follows the translation of

𝜆GTL. The translation has a key property: it maps well-typed 𝜆GTL expressions to well-typed 𝜆ICTL

expressions with the same type.

Theorem 3.1 (Uni is Type-Preserving). If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then Γ ⊢sim 𝑒 : 𝜏 .

ICTL Type Guarantees Lift to the GTL. As discussed in §2, a type-preserving translation,

such as Uni, allows us to focus on the semantics of 𝜆ICTL to analyze enforcement of the types of a

well typed 𝜆GTL expression 𝑡 . Since the semantics of an 𝜆GTL expression 𝑡 of type 𝜏 is defined by

6
If we used compatible subtyping here, a conversion from Int to Nat would require calling a function with return type

∗. By splitting consistent subtyping into a compatibility relation and a subtyping relation, the type system accepts more

programs and simplifies the translation — the definition of [𝜏 ↙ 𝜏 ′]𝑒 becomes straightforward.

125:14 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

Γ ⊢sim 𝑒 : 𝜏 (selected rules)

Γ0 ⊢sim 𝑒0 : 𝜏0→𝜏1 Γ0 ⊢sim 𝑒1 : 𝜏0

Γ0 ⊢sim app{𝜏1} 𝑒0 𝑒1 : 𝜏1
Γ0 ⊢sim 𝑒0 : 𝜏0

Γ0 ⊢sim cast {𝜏1 ⇐ 𝜏0} 𝑒0 : 𝜏1
Γ0 ⊢sim 𝑒0 : 𝜏0 𝜏0 ⩽: 𝜏1

Γ0 ⊢sim 𝑒0 : 𝜏1

Fig. 6. Simple Typing for 𝜆ICTL

translation into a 𝜆ICTL expression 𝑒 also of type 𝜏 , the typing history of values produced by the

evaluation of 𝑡 is enforced only if the the typing history of values produced by the evaluation of

𝑒 is enforced. Therefore, the question of whether a translation-semantics combination for 𝜆ICTL

is vigilant for its static type system reduces to whether the semantics of 𝜆GTL enforce the typing

histories of the values produced during the evaluation of well-typed 𝜆ICTL expressions.

Note: The complete formal development of 𝜆GTL and 𝜆ICTL along with all the definitions, theorems

and proofs are in the supplemental material.

3.1 A Natural and a Transient Semantics for 𝜆ICTL

The definition of vigilance, which is the centerpiece of this paper, requires an apparatus for

determining the types associated with the value of each (sub)expression in a program — intuitively,

all the types in casts applied to that value — so that vigilance can decide if the semantics of the

ICTL indeed enforces these types. Such an apparatus needs to be dynamic in order to be precise

in a higher-order gradually typed setting, such as 𝜆ICTL. Consider, for instance, the expression

𝑒1 = if 𝑒𝑏 then cast {∗ ⇐ 𝜏} cast {𝜏 ⇐ ∗} 𝑒0 else 𝑒0. If the result of 𝑒0 is a value 𝑣0, then depending

on the result of 𝑒𝑏 , 𝑣0 is associated with different types: if 𝑒𝑏 evaluates to True, then 𝑣0 is associated
with 𝜏 , and otherwise it is not.

To record these types, we devise a log-based reduction semantics for 𝜆ICTL. This semantics creates

fresh labels ℓ for each intermediate value during the evaluation of a program to distinguish between

different values that are structurally the same, and then uses the labels to track the (two) types

from any casts that a label encounters during the evaluation of a program. Formally, the dynamic

semantics maintains a value log Σ, which is a map from labels ℓ to values 𝑣 and potential types

𝑜𝑝𝑡𝑖𝑜𝑛(𝜏 × 𝜏). The type information is optional because a value may never go through a cast.

The definition of the log-based reduction semantics requires an extension of the syntax of 𝜆ICTL

with values, labels, unannotated applications, errors and, most importantly, expressions that corre-

spond to the run-time representations of type casts and assertions. Essentially, these act as hooks

that allow us to define either a Natural or a Transient semantics for 𝜆ICTL while leaving the rest of

the formalism unchanged. The top left of Fig. 7 depicts these extensions. The monitor expression
mon {𝜏 ⇐ 𝜏} 𝑒 regulates the evaluation of cast expressions; it is an intermediate expression that sepa-

rates the tag checks performed by a cast from the creation of a proxy. An assert expression, assert𝜏 𝑒 ,
reifies type annotations on applications and function parameters as type assertions. Unannotated

applications correspond to applications whose annotation has been reified as a type assertion.

There are two kinds of errors in the evaluation language of 𝜆ICTL: Err• are expected errors and

include failures due to failed type casts and assertions, and Err◦ are unexpected errors that indicate

a failure of type soundness such as a call to a value that is not a function. Err ranges over these.
The two semantics of 𝜆ICTL are defined with the reduction relation −→∗

𝐿
that is the transitive,

compatible closure (over evaluation contexts) of the notions of reductions ↩→
𝐿
, where 𝐿 is either

Natural or Transient. The only difference between the two notions of reduction is in their compati-
bility metafunction ∝𝐿c , where the parameter 𝑐 represents the kind of check being performed by the

semantics. The metafunction consumes a value and a type, and either immediately returns True or
invokes 𝑣 ∝ ⌊𝜏⌋ that checks whether 𝑣 matches the tag ⌊𝜏⌋ of the given type 𝜏 . Put differently, 𝑣 ∝𝐿c 𝜏

Gradually Typed Languages Should Be Vigilant! 125:15

𝑣 F ℓ | 𝑛 | 𝑖 | True | False | ⟨ℓ, ℓ⟩ | 𝜆(𝑥 :𝜏) . 𝑒
𝑒 F . . . | ℓ | 𝑒 𝑒 | mon {𝜏 ⇐ 𝜏} 𝑒 | assert𝜏 𝑒 | Err
Σ : L→ V × option(T × T)

pointsto(Σ, ℓ)

pointsto(Σ, ℓ) =
{

fst(Σ(ℓ)) if fst(Σ(ℓ)) ≠ ℓ′
pointsto(Σ, ℓ′) if fst(Σ(ℓ)) = ℓ′

Σ, 𝑒 ↩→
𝐿
Σ, 𝑒 (selected rules)

Σ, 𝑣
↩→

𝐿
Σ[ℓ ↦→ (𝑣, none)], ℓ

where ℓ ∉ dom(Σ)

Σ, app{𝜏0} ℓ0 ℓ1
↩→

𝐿
Σ, assert𝜏0 (ℓ0 ℓ1)

Σ, ℓ0 ℓ1
↩→

𝐿
Σ, 𝑒0 [𝑥0← ℓ1]

if Σ(ℓ0) = (𝜆(𝑥0 :𝜏1). 𝑒0, _)
and pointsto(Σ, ℓ1) ∝𝐿𝑎𝑠𝑠𝑒𝑟𝑡 𝜏1

Σ, ℓ0 ℓ1
↩→

𝐿
mon {cod(𝜏1) ⇐ cod(𝜏2)}
(ℓ2 mon {dom(𝜏2)

⇐dom(𝜏1)} ℓ1)
if Σ(ℓ0) = (ℓ2, some(𝜏1, 𝜏2))

Σ, assert𝜏0 ℓ0
↩→

𝐿
Σ, ℓ0

if pointsto(Σ, ℓ0) ∝𝐿𝑎𝑠𝑠𝑒𝑟𝑡 𝜏0

Σ, assert𝜏0 ℓ0
↩→

𝐿
Σ,TypeErr(𝜏0, ℓ0)

if ¬pointsto(Σ, ℓ0) ∝𝐿𝑎𝑠𝑠𝑒𝑟𝑡 𝜏0

Σ, cast {𝜏1 ⇐ 𝜏2} ℓ0
↩→

𝐿
Σ,mon {𝜏1 ⇐ 𝜏2} ℓ0

if pointsto(Σ, ℓ0) ∝𝐿𝑐𝑎𝑠𝑡 𝜏1
and pointsto(Σ, ℓ0) ∝𝐿𝑐𝑎𝑠𝑡 𝜏2

Σ, ℓ0 ℓ1
↩→

𝐿
Σ,Wrong

if Σ(ℓ0) = (𝑣, _)
and 𝑣 ∉ 𝜆(𝑥 :𝜏). 𝑒 ∪ ℓ
or Σ(ℓ0) = (ℓ′

0
, none)

∝: 𝑣×𝐾 −→ B
𝑛 ∝ Nat = True
𝑖 ∝ Int = True
𝑏 ∝ Bool = True
⟨𝑣1, 𝑣2⟩ ∝ ∗×∗ = True
(𝜆(𝑥 :𝜏). 𝑒) ∝ ∗→∗ = True
(mon {𝜏 ⇐ 𝜏′} 𝑣) ∝ ∗→∗ = True
𝑣 ∝ ∗ = True
𝑣 ∝ 𝐾 = False

otherwise

∝𝐿𝑐 : 𝑣×𝐾 −→ B

c 𝑣 ∝Naturalc 𝜏 𝑣 ∝Transientc 𝜏

cast 𝑣 ∝ ⌊𝜏⌋ 𝑣 ∝ ⌊𝜏⌋
mon 𝑣 ∝ ⌊𝜏⌋ True

assert True 𝑣 ∝ ⌊𝜏⌋

Fig. 7. Evaluation Syntax and Reduction Semantics for 𝜆ICTL

either performs a tag check or is a no-op — which of the two depends on its 𝑐 and 𝐿 parameters,

that is, the 𝜆ICTL construct that triggers a possible tag check and the particular semantics of 𝜆ICTL.

Specifically, in both semantics, a cast expression performs a tag check. However, assert expressions

perform tag checks only in Transient since in Natural all dynamic type checking takes place via

proxies. Conversely, monitor expressions perform tag checks only in Natural since Transient does
not rely on proxies for dynamic type checking.

The bottom part of Fig. 7 presents a few selected rules of ↩→
𝐿
. When an expression reduces a

value, ↩→
𝐿
replaces it with a fresh label ℓ and updates Σ accordingly. An annotated application

becomes an unannotated one but wrapped in an assert expression that reifies the annotation as a

type assertion. Unannotated applications delegate to the compatibility metafunction a potential

check of the argument against the type of the parameter. When the compatibility metafunction

returns True the evaluation proceeds with a beta-reduction; otherwise it raises a dynamic type error

TypeErr. Since all values are stored in the value log and these rules need to inspect values, they

employ metafunction pointsto(·, ·). Given a value log Σ and a label ℓ , the metafunction traverses Σ
starting from ℓ through labels that point to other labels until it reaches a non-label value. The case

where an application does not involve a function is one of the cases that the type system of 𝜆ICTL

should prevent. Hence, the reduction rule raises Wrong to distinguish this unexpected error.

Assert and cast expressions also delegate any tag checks they perform to the compatibility

metafunction. If answer of the latter is positive, an assert expression simplifies to its label-body,

while a cast expression wraps its value-body into a monitor with the same type annotations.

Monitor expressions essentially implement proxies, if the semantics of 𝜆ICTL relies on them.

Specifically, a monitor expression performs any checks a proxy would perform using the compati-

bility metafunction, and produces a fresh label ℓ to record in the value log and associates ℓ with

two additional types. Upon an application of a label, ↩→
𝐿
retrieves the types associated with it,

and creates a monitor expression to enforce them. Hence, if the compatibility metafunction does

125:16 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

VL
sim⟦𝐶⟧ ≜ {(𝑘, Ψ , Σ, ℓ) | pointsto(Σ, ℓ) ∈ 𝐶}

VL
sim⟦𝜏1 × 𝜏2⟧ ≜ {(𝑘, Ψ , Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) ∧ (𝑘, Ψ , Σ, ℓ1) ∈ VL

sim⟦𝜏1⟧∧

(𝑘, Ψ , Σ, ℓ2) ∈ VL
sim⟦𝜏2⟧}

VL
sim⟦𝜏1 → 𝜏2⟧ ≜ {(𝑘, Ψ , Σ, ℓ) | ∀ (𝑗,Ψ′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ, ℓ𝑣, 𝜏0 :⩾ 𝜏2 .

Σ′ : (𝑗,Ψ′) ∧ (𝑗, Ψ′ , Σ′, ℓ𝑣) ∈ VL
sim⟦𝜏1⟧. ⇒ (𝑗, Ψ

′ , Σ′, app{𝜏𝑜 } ℓ ℓ𝑣) ∈ ELsim⟦𝜏0⟧}

VL
sim⟦∗⟧ ≜ {(𝑘, Ψ , Σ, ℓ) | (𝑘 − 1, Ψ , Σ, ℓ) ∈ VL

sim⟦𝐶⟧ ∪V
L
sim⟦∗ × ∗⟧ ∪V

L
sim⟦∗ → ∗⟧}

ELsim⟦𝜏⟧ ≜ {(𝑘, Ψ , Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′) ⇒ (𝑒′ = Err•∨

(∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ). Σ′ : (𝑘 − 𝑗,Ψ′)∧ (𝑘 − 𝑗, Ψ′ , Σ′, 𝑒′) ∈ VL
sim⟦𝜏⟧))}

Fig. 8. Vigilance for Simple Typing: Value and Expression Relations

perform tag checks for monitor expressions, monitors implement the two steps of checking types

with proxies: checking first-order properties of the monitored value, and creating further proxies

upon the use of a higher-order value. If the compatibility metafunction does not perform tag checks

then all these reduction rules are essentially void of computational significance; they are just a

convenient way for keeping the semantics syntactically uniform across Natural and Transient.
An example sequence of reductions as well as a bisimulation theorem that includes the value

equivalence relation is given in the supplemental material.

4 VIGILANCE, FORMALLY
In this section, we define vigilance for simple typing. It requires that every value produced during

the evaluation of an ICTL expression must satisfy both the type ascribed to it by the simple type

system and all the types from casts that were evaluated to produce this value. We refer to the

latter list of types as the run-time typing history for the value. The first of these two conditions is

essentially (semantic) type soundness which can be captured using a unary logical relation indexed

by types and inhabited by values that satisfy the type. For the second condition, we must extend

the logical relation to maintain a type history Ψ that keeps track of the run-time typing history ℎ

for each value 𝑣 in the log Σ, and then require that each 𝑣 satisfy all the types in its history ℎ.

We start with the standard semantic-type-soundness part of our step-indexed logical relation.

Fig. 8 presents the value and expression relations. Ignoring, for the moment, the highlighted terms

in the figure, the value relationVL
sim⟦𝜏⟧ specifies when a value stored at label ℓ in Σ satisfies the

type 𝜏 for 𝑘 steps — or, in more technical terms, when a Σ, ℓ pair belongs to 𝜏 . But each value

relation is also indexed by a type history Ψ that, intuitively, records the run-time typing histories

for all values in Σ, as we explain in detail later.

For base types, ℓ belongs to the relationVL
sim⟦𝐶⟧ if pointsto(Σ, ℓ) is a value of the expected form.

Since pairs are evaluated eagerly, they are never wrapped by extra types in the store, so the relation

for pairs,V𝐿
sim⟦𝜏1×𝜏2⟧ contains only labels that map to label pairs, and as usual, the components of

the pair must belong to 𝜏1 and 𝜏2, respectively.

For function types, a function usually belongs toV𝐿
sim⟦𝜏1 → 𝜏2⟧ if, when applied in some future

world — when there are fewer steps left and the value log and type history potentially contain

more labels — to a value that behaves like 𝜏1, it produces a result that behaves like 𝜏2. Our definition

is slightly different: since we support subsumption and since applications in our language are

Gradually Typed Languages Should Be Vigilant! 125:17

⊢ Ψ ≜ ∀ℓ .Ψ(ℓ) = 𝜏, 𝜏 ′, ℎ ⇒ 𝜏 ′ :⩾ head(ℎ)
⊢ Σ ≜ ∀ℓ ∈ dom(Σ). (Σ(ℓ) = (𝑣, none) ∧ 𝑣 ∉ L)

∨ (Σ(ℓ) = (ℓ′, some(𝜏 ′, 𝜏)) ∧ ∃𝑣 . 𝑣 = pointsto(Σ, ℓ) ∧ ¬(𝑣 ∝ ∗×∗) ∧ 𝑣 ∝ 𝜏 ′ ∧ 𝑣 ∝ 𝜏)
Ψ ⊢ℓ (𝑣, none) ≜ ∃𝜏 .Ψ(ℓ) = [𝜏]

Ψ ⊢ℓ (ℓ′, some(𝜏, 𝜏 ′)) ≜ Ψ(ℓ) = [𝜏, 𝜏 ′,Ψ(ℓ′)]
Ψ ⊢ Σ ≜ ⊢ Σ ∧ dom(Σ) = dom(Ψ) ∧ ∀ℓ ∈ dom(Ψ).Ψ ⊢ℓ Σ(ℓ)

Σ : (𝑘,Ψ) ≜ ⊢ Ψ ∧ Ψ ⊢ Σ ∧ ∀ℓ ∈ dom(Σ). (𝑗,Ψ, Σ, ℓ) ∈ VHL
sim⟦Ψ(ℓ)⟧

ℎ F 𝜏 | 𝜏, 𝜏, ℎ
Ψ : ℓ → ℎ

Fig. 9. Vigilance for Simple Typing: Value-Log Type Satisfaction

annotated with type assertions, we consider applications in which the assertion 𝜏0 is any supertype

of the result type 𝜏2, and require that the result behave like 𝜏0.
7

For the dynamic type,V𝐿
sim⟦∗⟧ is an untagged union over base typesV𝐿

sim⟦𝐶⟧, pairs of dynamic

typesV𝐿
sim⟦∗ × ∗⟧, and functions between dynamic typesV𝐿

sim⟦∗ → ∗⟧. Since these types are not
structurally smaller than ∗, step-indexing becomes crucial. For well-foundedness, an expression

that behaves like ∗ for 𝑘 steps is only required to behave like one of the types in the union for 𝑘 − 1.
To extend this characterization to expressions, we define the expression relation ELsim⟦𝜏⟧. An

expression 𝑒 behaves like type 𝜏 if it does not terminate within the step-index budget, if it runs to

an expected error, or if it produces a value that belongs toVL
sim⟦𝜏⟧.

The logical relation defined thus far is mostly standard. We now consider how to ensure that

every value also satisfies all the types from casts that were evaluated to produce that value. Note

that all values that flow through casts are entered into the value log Σ. Thus Σ is analogous to a

dynamically allocated (immutable) store and we can take inspiration from models of dynamically

allocated (immutable) references[Ahmed 2004; Reddy and Yang 2003] to (1) keep track of the

run-time typing histories of values in a type history Ψ, just as models of references keep track of

the types of references in a store typing, and (2) ensure that values in Σ satisfy the run-time typing

histories in Ψ, just as models of references ensure that the store 𝑆 satisfies the store typing.

Thus, as the highlighted parts in Fig. 8 show, we set up a Kripke logical relation[Ahmed 2004;

Pitts and Stark 1998] indexed by worlds comprised of a step-index 𝑘 and a type history Ψ, which is

a mapping from labels ℓ to run-time typing histories ℎ that are essentially lists of types. We define

a world accessibility relation (𝑗,Ψ′) ⊒ (𝑘,Ψ), which says that (𝑗,Ψ′) is a future world accessible

from (𝑘,Ψ′) if 𝑗 ≤ 𝑘 (we may have potentially fewer steps available in the future) and the future

type history Ψ′ may have more entries than Ψ. Whenever we consider future logs Σ′, we require
that there is a future world (𝑗,Ψ′) ⊒ (𝑘,Ψ) such that the value log satisfies the typing history

Σ′ : (𝑗,Ψ′). Where our relation differs from the standard treatment of state is in the constraints

placed on Σ by Ψ via the value-log type-satisfaction relation Σ : (𝑘,Ψ), defined in Fig. 9.

In more detail, as Fig. 9 shows, our typing history Ψ associates with each label in the value

log a run-time typing history ℎ, where ℎ is either a single type, indicating that the value was

produced at that type, or ℎ is two types 𝜏, 𝜏 ′ appended onto another typing history ℎ′, indicating
type obligations added by a cast expression that casts from 𝜏 ′ to 𝜏 . The head of a typing history

ℎ is the top-most type 𝜏 when ℎ is 𝜏 , or 𝜏 when ℎ is 𝜏, 𝜏 ′, ℎ′. We say that a value log Σ satisfies a

world, written Σ : (𝑘,Ψ), when three things are true:

1. The type history must be syntactically well-formed: ⊢ Ψ. The well-formedness constraint ⊢ Ψ
ensures that each run-time typing history ℎ is well formed. Because casts in our model may be

7
The logical relation is well founded despite the use of 𝜏0 here; it is defined by induction on the step index and (nested)

induction on the structure of types, and in every instance of a use of subtyping, the step index is guaranteed to decrease.

125:18 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

coercive, they can only be expected to function appropriately when the value passed to the cast is

of the appropriate (semantic) type. Since casts add types 𝜏, 𝜏 ′ to the run-time typing history ℎ of a

value, this gives rise to a syntactic constraint that the “from” type 𝜏 ′ of such an entry matches (up

to subsumption) the type that the casted value previously held in the history, namely head(ℎ).

2. The value log must be well-formed given the type history: Ψ ⊢ Σ. This requires certain syntactic

constraints ⊢ Σ that are independent of Ψ, and that for each location ℓ , Σ should provide some

value-log entry that is itself consistent with Ψ. The former constraint ⊢ Σ corresponds to the basic

syntactic invariants preserved by the operational semantics: casted values are always compatible

(due to the 𝑣 ∝cast
𝐿

𝜏 checks performed by the cast evaluation rules) and are never pairs because our

pairs are evaluated eagerly. For the latter, when the entry Ψ(ℓ) does not record a cast, Ψ ⊢ℓ (𝑣, none)
specifies that the entry Ψ(ℓ) must be just 𝜏 , ie it does not include any type obligations added by a

cast. If the entry Ψ(𝑙) does record a cast, then Ψ ⊢ℓ (𝑣, some𝜏, 𝜏 ′) specified that the recorded types

𝜏, 𝜏 ′ must match those in Ψ(ℓ), and the casted location ℓ ′ must itself be well formed with respect to

the remaining entries in the run-time typing history Ψ(ℓ ′).

3. The values in the log must satisfy their run-time typing history. The core semantic condition

of value-log type satisfaction is that Σ(ℓ) must behave like each type 𝜏 in its run-time typing

history Ψ(ℓ). But we cannot simply ask that Σ(ℓ) ∈ VL
sim⟦𝜏⟧ for each 𝜏 ∈ Ψ(ℓ). Since casts in our

model may be coercive, they can only be expected to function appropriately when the value passed

to the cast is of the appropriate (semantic) type. Because VL
sim⟦𝜏1 → 𝜏2⟧ quantifies over values

𝑣 ∈ VL⟦𝜏1⟧, if we were to take the above approach, a function cast from 𝜏1→𝜏2 to 𝜏
′
would need

to behave well when applied to an argument 𝑣 ∈ VL
sim⟦𝜏1⟧. Since a cast on a function must ensure

that the function’s actual argument 𝑣 belongs to the type expected by the original function, it must

semantically perform a cast equivalent to cast {𝜏1 ⇐ dom(𝜏 ′)} 𝑣8 to be well formed, which one

would not expect to be true in general.

To properly incorporate this constraint, we define typing-history relations that specify when a

value or expression behaves like multiple types at once
9
. These relations,VHL

sim⟦𝜏⟧ and EHL
sim⟦𝜏⟧

are given in the top of Fig. 10. For a nonempty list of types 𝜏 , the relation is defined inductively over

the first type in the list, following a similar structure toVL
sim⟦𝜏⟧. When 𝜏 is a base type𝐶 , the value

typing-history relationVHL
sim⟦𝐶, 𝜏⟧ contains any ℓ such that pointsto(Σ, ℓ) is inVL

sim⟦𝜏⟧ for each
𝜏 ∈ [𝐶, 𝜏]. As in the value relation, since casts on pairs are evaluated eagerly,VH𝐿

sim⟦𝜏1×𝜏2, 𝜏⟧
contains only pairs ⟨ℓ1, ℓ2⟩ whose components inductively satisfy all the appropriate types.

As discussed above,VH𝐿
sim⟦𝜏1 → 𝜏2, 𝜏⟧ requires a function to behave well only when it is given

an argument 𝑣 ∈ VL
sim⟦𝜏1⟧. As in theV relation, it must also behave well when the application is

annotated with any 𝜏0 :⩾ 𝜏2. Behaving “well” means that an application, evaluated with a future

store Σ′ : (𝑗,Ψ′) ⊒ (𝑘,Ψ) should behave like all the types 𝜏0, cod(𝜏). Since this is an expression, we

define the EHL
sim⟦𝜏⟧ relation to characterize expressions as behaving like several types at once;

since this only matters when the expression reduces to a value, it is precisely the same as the E
relation, except that it is indexed by 𝜏 rather than 𝜏 , and it requires the eventual value to be in

VH𝐿
sim⟦𝜏⟧ rather thanV𝐿

sim⟦𝜏⟧. Finally, as in the value relation,VH
𝐿
sim⟦∗, 𝜏⟧ is an untagged union

over base types VH𝐿
sim⟦𝐶, 𝜏⟧, pairs of dynamic types VH𝐿

sim⟦∗ × ∗, 𝜏⟧, and functions between

dynamic typesVH𝐿
sim⟦∗ → ∗, 𝜏⟧, at step index 𝑘 − 1.

8
In our reduction semantics, this constraint is ensured by an expression of the form mon {𝜏1 ⇐ dom(𝜏 ′) } 𝑣 for the sake of
Transient, which does not perform the expected checks here; see §5.

9
An arbitrary list of types used as this index is more general than the grammar of ℎ, but we will freely interconvert them,

since the syntax of ℎ is a subset of that of 𝜏 .

Gradually Typed Languages Should Be Vigilant! 125:19

VHL
sim⟦𝐶, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝜏 ∈ [𝐶, 𝜏2, . . . 𝜏𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V

L
sim⟦𝜏⟧}

VHL
sim⟦𝜏

′
1
× 𝜏 ′′

1
, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _)

∧ (𝑘,Ψ, Σ, ℓ1) ∈ VHL
sim⟦𝜏

′
1
, fst(𝜏2), . . . fst(𝜏𝑛)⟧

∧ (𝑘,Ψ, Σ, ℓ2) ∈ VHL
sim⟦𝜏

′′
1
, snd(𝜏2), . . . snd(𝜏𝑛)⟧}

VHL
sim⟦𝜏

′
1
→ 𝜏 ′′

1
, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀(𝑗,Ψ′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ, ℓ𝑣, 𝜏0 :⩾ 𝜏2 .

(𝑗,Ψ′, Σ′, ℓ𝑣) ∈ VL
sim⟦𝜏

′
1
⟧ ∧ Σ′ : (𝑗,Ψ′)

⇒ (𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EHL
sim⟦[𝜏0, cod(𝜏2), . . . cod(𝜏𝑛)]⟧}

VHL
sim⟦∗, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | (𝑘 − 1,Ψ, Σ, ℓ) ∈ VH

L
sim⟦𝐶, 𝜏2, . . . 𝜏𝑛⟧ ∪

VHL
sim⟦∗ × ∗, 𝜏2, . . . , 𝜏𝑛⟧ ∪VH

L
sim⟦∗ → ∗, 𝜏2, . . . , 𝜏𝑛⟧}

EHL
sim⟦𝜏⟧ ≜ {(𝑘,Ψ, Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ

′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′)

⇒ (𝑒′ = Err• ∨ (∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) . Σ′ : (𝑘 − 𝑗,Ψ′) ∧ (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VHL
sim⟦𝜏⟧))}

GLsim⟦Γ⟧ ≜ {(𝑘,Ψ, Σ, 𝛾) | dom(Γ) = dom(𝛾) ∧ ∀𝑥 .(𝑘,Ψ, Σ, 𝛾 (𝑥)) ∈ VL
sim⟦Γ(𝑥)⟧}

⟦Γ ⊢sim 𝑒 : 𝜏⟧L ≜ ∀(𝑘,Ψ, Σ, 𝛾) ∈ GLsim⟦Γ⟧. Σ : (𝑘,Ψ) ⇒ (𝑘,Ψ, Σ, 𝛾 (𝑒)) ∈ ELsim⟦𝜏⟧

Fig. 10. Vigilance for Simple Typing: Typing History and Top-Level Relations

In typical fashion, we generalize to open expressions at the bottom of Fig. 10. In detail, ⟦Γ ⊢sim
𝑒 : 𝜏⟧L says that an expression 𝑒 that type checks in context Γ behaves like 𝜏 under L when, given

a substitution 𝛾 that behaves like Γ, 𝛾 (𝑒) behaves like 𝜏 . Moreover, a substitution 𝛾 , mapping free

variables 𝑥 to labels ℓ in Σ, behaves like Γ when for each 𝑥 : 𝜏 in Γ, 𝛾 (𝑥) behaves like Γ(𝑥).
Note. Abstracting the construction of the vigilance relation for simple typing and returning to

the recipe from §2.5, the starting point for constructing a vigilance relation is a standard type

soundness model. That basic model should be extended with a world structure that captures typing

histories, such as Ψ. In many cases, we conjecture it is possible to cartesian product the additional

world structure onto the world structure used for soundness. The next step is the incorporation of

the additional world structure into theV and E relations. The resulting relations,VH and EH ,

should be liftings ofV and E but their definitions require some “semantic thinking” for managing

the extended world (just as the definitions ofV and E do). Finally, store satisfaction, Σ : (𝑘,Ψ),
should be strengthened with extra conditions as listed above, reflecting the extension of the world

structure. Importantly, store satisfaction should entail that the semantics enforce typing histories.

With our vigilance logical relation in place, we formally establish that the combination of Uni
and Natural semantics are vigilant for simple typing iff all well typed GTL expressions 𝑡 translate

to ICTL expressions 𝑒 in the vigilance relation.

Theorem 4.1 (Uni-Natural Is Vigilant for Simple Typing). If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then
⟦Γ ⊢sim 𝑒 : 𝜏⟧Natural.

The theorem is a direct consequence of whether the Natural semantics satisfies the fundamental

property of the vigilance relation for simple typing. As described in §3, given a type-preserving

translation, such as Uni, the question of whether the combination of the translation and a semantics

is vigilant for a type system reduces to whether the semantics enforces the typing histories. The

fundamental property entails exactly that. First, values satisfy the types ascribed to them by the

simple type system; well-typed terms ⊢sim 𝑒 : 𝜏 are in ELsim⟦𝜏⟧, which says that if 𝑒 runs to a value,

then the value must behave like 𝜏 . Second, the fundamental property entails that values satisfy the

125:20 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

𝐾 F Nat | Int | Bool | ∗×∗ | ∗→∗ | ∗
Γ F · | Γ, (𝑥 :𝐾)
𝑒 F 𝑥 | 𝑛 | 𝑖 | True | False | 𝜆(𝑥 :𝜏). 𝑒 | ⟨𝑒, 𝑒⟩ | app{𝜏} 𝑒 𝑒
| fst{𝜏} 𝑒 | snd{𝜏} 𝑒 | binop 𝑒 𝑒
| if 𝑒 then 𝑒 else 𝑒 | cast {𝜏 ⇐ 𝜏} 𝑒

Γ ⊢tag 𝑒 : 𝐾 (selected rules)

T-App

Γ0 ⊢tag 𝑒0 : ∗→∗
Γ0 ⊢tag 𝑒1 : 𝐾

Γ0 ⊢tag app{𝜏} 𝑒0 𝑒1 : ⌊𝜏⌋
Fig. 11. Tag Typing for 𝜆ICTL

types of all casts that were evaluated to produce them; if 𝑒 runs to a value with value log Σ′, then
there is a future world (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′).

Theorem 4.2 (Natural Satisfies the Fundamental Property for Simple Typing). If Γ ⊢sim 𝑒 : 𝜏
then ⟦Γ ⊢sim 𝑒 : 𝜏⟧Natural.

As for the combination of Uni and Transient, we can show that they are not vigilant for simple

typing with the counter-example from §2.

Theorem 4.3 (Uni-Transient Is Not Vigilant for Simple Typing). There are Γ, 𝑡 , 𝐾 , 𝑒 such that
Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 and ¬⟦Γ ⊢sim 𝑒 : 𝜏⟧Transient.

5 TRANSIENT IS MORE THAN TAG CHECKING
Transient does not use proxies and, as a result, it does not enforce all the types from casts it

encounters during the evaluation of an ICTL program. For instance, consider 𝑝 = ⟨−1,−1⟩, 𝑓 =

𝜆(𝑥 : Int× Int) → (Nat × Nat). 𝑥 , and 𝑡 = 𝑓 𝑝 . In words, consider a function that takes a pair of Ints
and returns it as a pair of Nats, and apply the function to the pair ⟨−1,−1⟩. Under Uni, 𝑡 becomes:

𝑒 = app{Nat × Nat} (𝜆(𝑥 : Int × Int). cast {Nat × Nat⇐ Int × Int} 𝑥) ⟨−1,−1⟩
Interestingly, sinceTransient only checks the top-level constructor of types on casts, 𝑒 ↩→

T
⟨−1,−1⟩.

However, the final result of 𝑒 is also the result of 𝑓 which is supposed to be a Nat × Nat according
to 𝑓 ’s casts. Hence, Transient is not vigilant for simple typing:

Theorem 5.1 (Uni-Transient Is Not Vigilant for Simple Typing). There are Γ, 𝑡 , 𝑒 , 𝜏 such that
Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 and ¬⟦Γ ⊢sim 𝑒 : 𝜏⟧Transient.

However, as previous work hints [Greenman and Felleisen 2018; Greenman et al. 2019a; Vitousek

et al. 2017],Transient should enforce the tag typing history of values produced during the evaluation
of an ICTL expression. Following the recipe from §2.5, we formalize this relation between Transient
and the enforcement of tags as a vigilance property by: (i) adjusting the type system of 𝜆GTL and

𝜆ICTL to tag typing; (ii) reusingUni to map 𝜆GTL expressions to 𝜆ICTL expressions with the same tags

— since Uni preserves simple typing, it also preserves tag typing; and (iii) modifying the vigilance

logical relation from §4 to capture the semantics of ICTL tags rather than ICTL types.

Fig. 11 sketches how we adjust the simple type system of 𝜆ICTL to tag typing . The tag typing

rules, which relate an expression 𝑒 with its top-level constructor 𝐾 , are entirely unsurprising. The

most interesting one is that for applications allows arguments at any type, since the type of a

function is simply the procedure tag that does not contain any information about the function’s

domain. As expected, every expression that simply type checks also tag type checks:

Theorem 5.2 (Simple Typing Implies Tag Typing). If Γ ⊢sim 𝑒 : 𝜏 , then ⌊Γ⌋ ⊢tag 𝑒 : ⌊𝜏⌋.
where ⌊·⌋ returns the tag of a given type 𝜏 , and which we lift in a straightforward fashion to

type environments Γ. Finally, the Uni translations is tag-preserving, meaning it translates a 𝜆GTL

expression 𝑡 with type 𝜏 to a 𝜆ICTL expression 𝑒 with type ⌊𝜏⌋:
Theorem 5.3 (Uni is Tag-Preserving). If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then ⌊Γ⌋ ⊢tag 𝑒 : ⌊𝜏⌋.

Gradually Typed Languages Should Be Vigilant! 125:21

VL
tag⟦∗ → ∗⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀(𝑗,Ψ′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ, ℓ𝑣, 𝜏0 .

Σ′ : (𝑗,Ψ′) ∧ (𝑗,Ψ′, Σ′, ℓ𝑣) ∈ VL
tag⟦∗⟧. ⇒ (𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ ELtag⟦⌊𝜏0⌋⟧}

Fig. 12. Function Case of the Value Vigilance Relation for Tag Typing

A vigilance relation for tag typing requires modifying the vigilance relation for simple typing

from §4 to obtain a relational interpretation of tag types. The modification is rather straightforward

and reflects the differences between the simple and tag type systems for 𝜆ICTL. The full details are in

the supplemental material; here we highlight a few key points. In general, the value and expression

relations for tag typing, i.e.,V𝐿
tag,VH𝐿

tag, E𝐿tag, EH𝐿
tag, are identical to the corresponding relations

for simple typing except that types are restricted to tags. For example, the cases for Nat, Int, Bool,
∗ × ∗, and ∗ in V𝐿

tag and VH𝐿
tag follow the exact template of the corresponding cases in V𝐿

sim

and VH𝐿
sim modulo the use of ⌊·⌋ as needed to turn types into tags. However, the cases for the

procedure tag require additional care. Fig. 12 shows the cases of V𝐿
tag for ∗ → ∗. In addition to

the restriction of types to tags, the type assertion for the application is about an arbitrary type 𝜏0,

not a supertype of the codomain of the function as in V𝐿
sim . Additionally, the relation does not

require that the application behaves according to the codomain ∗, but instead the tag ⌊𝜏0⌋ of the
annotation. These extra modifications reflect that the relation aims to capture the meaning of tags

not types. TheVH𝐿
tag⟦∗ → ∗, . . . 𝐾𝑛⟧ case is analogous.

With tag typing and the vigilance relation in hand, we can show that the combination of the Uni
translation and Transient is indeed vigilant for tag typing:

Theorem 5.4 (Uni-Transient Is Vigilant for Tag Typing).

If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then ⟦Γ ⊢tag 𝑒 : ⌊𝜏⌋⟧Transient.
As for theorem 4.1, theorem 5.4 derives from tag-preservion for Uni and the fundamental property

of the vigilance relation for tag typing.

Theorem 5.5 (Transient Satisfies the Fundamental Property of the Vigilance Relation
for Tag Typing). If Γ ⊢tag 𝑒 : 𝐾 then ⟦Γ ⊢tag 𝑒 : 𝐾⟧Transient.

Despite Theorem 5.2, tag types are not semantically “weaker” than simple types: a function with

type ∗→∗ can be used safely in more contexts than a function with type 𝜏→∗. Because of this
difference tag typing is unsound for Natural. For instance, the GTL expression 𝜆(𝑥 :∗×∗) → ∗. fst𝑥
translates under Uni to 𝑒 = 𝜆(𝑥 :∗ × ∗) . fst{∗} 𝑥 which has tag ∗→∗. The interpretation of ∗→∗
in the vigilance relation for tag typing requires that 𝑒 applied to any 𝑒′ in the interpretation of ∗
is well behaved. When 𝑒 is applied to any 𝑒′ that is not a pair, under Natural this application will

throw a soundness errorWrong. In contrast, the same expression produces a type error TypeErr
in Transient since Transient uses a type assertion to check the tag of function arguments. At core,

Natural relies on stronger type invariants to ensure safety, while Transient uses dynamic checks to

ensure safety in more contexts. Consequently, Natural is not vigilant for tag typing:

Theorem 5.6 (Uni-Natural Is Not Vigilant for Tag Typing). There are Γ, 𝑡 , 𝐾 , 𝑒 such that
Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 and ¬⟦⌊Γ⌋ ⊢tag 𝑒 : ⌊𝜏⌋⟧Natural.

5.1 A Truer Type System for 𝜆ICTL

While each individual Transient cast checks only a tag, because the Uni-Transient combination

is vigilant for tag typing extra information about a value is available. For example, consider the

function 𝑓 = 𝜆(𝑥 :∗×∗) . 𝑥 . Under the tag type system, 𝑓 type checks at ∗→∗. From this type, we can

125:22 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

Γ ⊢tru 𝑒 : 𝜏 (selected rules)

Γ, (𝑥 :𝐾) ⊢tru 𝑒 : 𝜏
Γ ⊢tru 𝜆(𝑥 :𝐾). 𝑒 : ∗→𝜏

Γ ⊢tru 𝑒1 : ∗→𝜏1
Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru app{𝐾} 𝑒1 𝑒2 : 𝐾 ⊓ 𝜏1

Γ ⊢tru 𝑒1 : ⊥
Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru app{𝐾} 𝑒1 𝑒2 : ⊥

Γ ⊢tru 𝑒𝑏 : Bool
Γ ⊢tru 𝑒1 : 𝜏1
Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru if 𝑒𝑏 then 𝑒1 else 𝑒2 : 𝜏1 ⊔ 𝜏2
Γ ⊢tru 𝑒 : 𝜏

Γ ⊢tru cast {𝐾2 ⇐ 𝐾1} 𝑒0 : 𝐾2 ⊓ 𝐾1 ⊓ 𝜏

𝜏 F Nat | Int | Bool | 𝜏×𝜏 | ∗→𝜏 | ∗ | ⊥

⊥

Nat

Int
Bool

𝜏1×𝜏2

𝜏 ′
1
×𝜏 ′

2

∗→𝜏1

∗→𝜏 ′
1

∗

Fig. 13. Truer Typing for 𝜆ICTL

deduce only that 𝑓 is well-behaved when given any argument, and that it makes no promises about

its result. However, vigilance for tag typing implies that Transient also checks that the argument

of 𝑓 is a pair. Consequently, we should be able to conclude that the return type of 𝑓 is really ∗×∗.
As this example hints, there should an alternative type system that the Transient approach can

actually enforce. That is, we can capture more precise static information than tags with no change
to the dynamics. As an exercise, we make this extra static information manifest in a truer type
system for 𝜆ICTL. In the remainder of this section, we describe this type system, use vigilance to

examine it, and demonstrate how it enables the elision of some tag checks that Transient performs.

Fig. 13 presents the truer type system. A key distinction with the , its rules assume a restricted

𝜆ICTL syntax where type ascriptions are tag 𝐾 . Similarly, type environments Γ map variables to tags.

However, truer typing deduces more precise types 𝜏 than tags. These differ from simple types in

two major ways. First, the domain of function types is always ∗. After all, in the Transient approach,
the type assertions injected in the body of a function – including the tag check of its argument —

guarantee that the function can handle any argument. Second, truer typing can deduce that some

expressions raise a run-time type error due to incompatible tag checks, and hence, truer types

include ⊥. This inclusion of ⊥ allows us to define a full subtyping lattice ≤ on truer transient types,

as shown in the upper right portion of Fig. 13. Like other systems with subsumption rules for

subtyping, the truer type system includes a subsumption rule, but for the subtyping lattice ≤.
The typing rule for anonymous functions type checks the body of a function under the assumption

that the function’s argument has the ascribed tag. But, as discussed above, the domain of the function

is ∗ because applications implicitly check the argument of a lambda against this tag annotation.

Dually, the rule for applications admits function arguments that typecheck at any tag.

Because applications perform a tag check on the result of the application, rather than typing the

entire expression at the codomain of the function 𝜏1, the truer type system seeks to take advantage

of the fact that the result of the application satisfies both 𝜏1 and 𝐾 . For that, the typing rule calculates
the result type as the greatest lower bound 𝐾 ⊓ 𝜏1. If 𝜏1 is ⊥, a special application rule propagates

it to the result type of the application. Similar to the non-⊥ application rule, the rule for cast

expressions refines the type of its result type with the tag check from the cast. Finally, conditionals

typecheck at the least upper bound, 𝜏1 ⊔ 𝜏2, of both branches.

Because of its flow-sensitive nature, the truer type system accepts just as many programs as the

tag type system, but calculates more precise types for them:

Theorem 5.7 (Tag Typing Implies Truer Typing). Suppose that Γ ⊢tag 𝑒 : 𝐾 . Then there exists
some 𝜏 ≤ 𝐾 such that Γ ⊢tru 𝑒 : 𝜏 .
Similarly, since simple typing implies tag typing, it also implies truer typing:

Gradually Typed Languages Should Be Vigilant! 125:23

Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 (selected rules)

Γ, (𝑥 :𝐾) ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝜆(𝑥 :𝐾) → 𝜏 . 𝑡 ⇒ ∗→𝜏

⇝ 𝜆(𝑥 :𝐾). 𝑒 : ∗→𝜏 ′

Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

¬(∃𝑒, 𝜏 ′ . Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′)
Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐+ (𝜏 \ ⌊𝜏⌋)×∗
⇝ 𝑒 : 𝜏1×𝜏2

Γ ⊢Flow fst 𝑡 ⇐ 𝜏

⇝ fst{⌊𝜏⌋} 𝑒 : 𝜏1 ⊓ ⌊𝜏⌋

Γ ⊢Flow 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 : 𝜏 ′′

𝜏 ′ ≤ 𝜏
Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′′

Γ ⊢Flow 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 : 𝜏 ′′

𝜏 ′ ⪯̸ 𝐾

Γ ⊢Flow 𝑡 ⇐⇒ 𝐾 ⇝
cast {𝐾 ⇐ ⌊𝜏 ′⌋} 𝑒 : 𝐾 ⊓ ⌊𝜏 ′⌋ ⊓ 𝜏 ′′

Fig. 14. Flow Sensitive Translation from 𝜆GTL to 𝜆ICTL

Corollary 5.8 (Simple Typing Implies Truer Transient Typing). If Γ ⊢sim 𝑒 : 𝜏 , then ⌊Γ⌋ ⊢tru
⌊𝑒⌋ : 𝜏 ′ where 𝜏 ′ ≤ ⌊𝜏⌋.

5.2 Translating 𝜆GTL to 𝜆ICTL for Truer
Using vigilance for examining truer typing is not as straightforward as for tag typing. Specifically,

in the case of tag typing, we can use the Uni translation as is. However, in order to get more precise

types while maintaining an algorithmic presentation of 𝜆GTL with truer typing, we need a new

translation. In response, we design a bidirectional type system and translation from 𝜆GTL to 𝜆ICTL,

which allows us to capitalize on truer typing’s ability to take advantage of the tag checks from

casts to refine the types of expressions.

Fig. 14 presents a few salient rules of the judgments that define the type checker for 𝜆GTL

expressions and their flow sensitive translation to 𝜆ICTL. Unlike the Uni translation, Flow produces

a type 𝜏 ′ for the translated term 𝑒 . The translation is defined so that 𝜏 ′ ≤ 𝜏 in the subtyping lattice,

which implies that the evaluation of 𝑒 with the Transient semantics must at least enforce the types

of 𝑡 (by the subsumption rule), but may also enforce a “stronger” type 𝜏 ′. Both 𝜏 and 𝜏 ′ are a safe
basis for reasoning about the behavior of a well-typed expression (an example is given in §5.4).

The “infers” judgment of the bidirectional translation (Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒′ : 𝜏 ′) is similar to that

of the Uni translation from §3; given a type environment and a 𝜆GTL expression, it type checks 𝑡

at type 𝜏 , translates it to the 𝜆ICTL expression 𝑒 , and calculates the 𝜆ICTL type 𝜏 ′. However, when
𝑡 contains a type annotation—such as in the return type annotation of a function—rather than

inserting a cast expression that is supposed to enforce the annotation, the judgment appeals to the

“checks” judgment Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′ that attempts to construct a translated function body 𝑒′

that has type 𝜏 , and calculate its type 𝜏 ′. After all, the truer type system is supposed to reflect the

types that Transient enforces, and Transient only uses casts that perform tag checks.

The “checks” judgment itself employs two other judgments. Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′ inserts an
appropriate type ascription to an application or a pair projection, and delegates back to the “checks”

judgment to construct a term that has the portion of 𝜏 that the ascription does not cover (see Fig. 17,

bottom right, for the definition of · \ ·). Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′ applies to any expression where

the previous judgment does not. It uses the “infers” judgment recursively to infer a type 𝜏 ′ for 𝑡
that is either a subtype of 𝜏 , or a type whose tag it can cast to 𝜏 (if 𝜏 is a tag).

As an example of this translation, consider the 𝜆GTL expression

𝑡 = 𝜆(𝑥 :∗ × ∗) → Nat × Nat. ⟨fst𝑥, snd𝑥⟩
The “infers” judgments translates the body of the function , but doesn’t simply try to insert a single

cast to enforce Nat×Nat, like the HO translation judgment from §3 would. Instead, it delegates to

125:24 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

VL
tru⟦∗ → 𝜏⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀(𝑗,Ψ′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ, ℓ𝑣, 𝜏0 .

Σ′ : (𝑗,Ψ′) ∧ (𝑗,Ψ′, Σ′, ℓ𝑣) ∈ VL
tru⟦∗⟧. ⇒ (𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ ELtru⟦𝜏 ⊓ ⌊𝜏0⌋⟧}

Fig. 15. Function Case of the Value Vigilance Relation for Truer Typing

the “checks” judgment which attempts to find a way to insert type assertions into the body of the

function in order to construct a body that has the desired result type. Hence, with the help of the

⇐ judgment, it asserts that the pair projections in the body of the function are naturals, per the

tag of the required type, leading to the following translated 𝜆ICTL expression:

𝑒 = 𝜆𝑥 : ∗ × ∗. ⟨fst{Nat} 𝑥, snd{Nat} 𝑥⟩
Importantly, just like the Uni translation, the Flow translation is type-preserving:

Theorem 5.9 (Flow Preserves Truer Types). If Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′ then Γ ⊢tru 𝑒 : 𝜏 .

5.3 Flow and Transient are Vigilant for Truer Typing
The specifics of the truer type system require a few modifications to the vigilance logical relation

from §4. Most of them are analogous to those for tag typing described above — the supplemental

material includes all the details. The key difference betweenV𝐿
tru andVH𝐿

tru andV𝐿
tag andVH𝐿

tag

is that the first are not restricted to tags but to truer types. To make the discussion concrete, Fig. 15

shows the case ofV𝐿
tru for truer function types,V𝐿

tru⟦∗ → 𝜏⟧. Similar to the corresponding case

for tag typing in Fig. 12, there is no restriction on the annotation of the application. However, the

result of the application is required to behave according not just to ⌊𝜏0⌋, but to 𝜏 ⊓ ⌊𝜏0⌋, reflecting
the truer typing for applications in Fig. 13. Finally,V𝐿

tru comes with an extra case for ⊥ given its

important role in the truer type system.

It is worth noting that the vigilance relation for truer typing is stronger than the corresponding

logical relation for type soundness. While the truer type system aims to reflect statically as much

information as possible from the tag checks performed during the evaluation of a 𝜆ICTL expression,

the static approximation in the conditional rule shows, as all type systems, it fails to do so accurately.

As a result, if truer typing deduces that the result of a conditional has type ∗, then a semantics can

ignore some of the checks the branches of the conditional are supposed to perform and still truer

typing would be sound. However, vigilance requires that the semantics performs all the checks

from the evaluated branch nevertheless.

With the Flow translation and the vigilance relation for true typing in hand, we can show that

the combination of Flow and Transient is vigilant for truer typing:

Theorem 5.10 (Flow-Transient Is Vigilant for Truer Typing). If Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 then
⟦Γ ⊢tru 𝑒 : 𝜏⟧Transient.

The theorem follows from Flow being type preserving and the fundamental property for the

vigilance relation for truer typing:

Theorem 5.11 (Transient Satisfies the Fundamental Property of the Vigilance Relation
for Truer Typing). If Γ ⊢tru 𝑒 : 𝜏 then ⟦Γ ⊢tru 𝑒 : 𝜏⟧Transient.

5.4 When are Transient Checks Truly Needed?
Since in Transient all elimination forms perform tag checks, even those in code with precise types,

some of these checks are redundant. Vitousek et al. [2019] use a sophisticated whole-program

constraint system to infer when Transient’s tag checks may be elided due to static information that

the type system computes. The static information the truer type system provides may very naturally

be used to implement and prove correct a similar elision pass for Transient tag checks. Indeed,

Gradually Typed Languages Should Be Vigilant! 125:25

Γ ⊢opt 𝑒 : 𝜏 ⇝ 𝑒 (selected rules)

Γ0 ⊢opt 𝑒0 : ∗→𝜏1 ⇝ 𝑒′
0

Γ0 ⊢opt 𝑒1 : 𝜏 ′0 ⇝ 𝑒′
1

Γ0 ⊢opt app{𝐾1} 𝑒0 𝑒1 : 𝐾1 ⊓ 𝜏1 ⇝ app{𝐾1 \ 𝜏1} 𝑒′0 𝑒
′
1

Γ0 ⊢opt 𝑒0 : ⊥⇝ 𝑒′
0

Γ0 ⊢opt 𝑒1 : 𝜏 ′0 ⇝ 𝑒′
1

Γ0 ⊢opt app{𝐾1} 𝑒0 𝑒1 : ⊥⇝ app{𝐾1 \ ⊥} 𝑒′0 𝑒
′
1

Γ0 ⊢opt 𝑒0 : 𝜏0 ⇝ 𝑒′
0

Γ0 ⊢opt cast {𝐾1 ⇐ 𝐾0} 𝑒0 : 𝐾1 ⊓ 𝐾0 ⊓ 𝜏0 ⇝ cast {𝐾1 \ (𝐾0 ⊓ 𝜏0) ⇐ 𝐾0 \ 𝜏0} 𝑒′0
𝐾 \𝜏 =

{
∗ if 𝜏 ≤ 𝐾
𝐾 otherwise

Fig. 17. Truer Typing: Check-elision optimization for 𝜆ICTL

given truer, local type-based reasoning is sufficient for the elision of the same checks as Vitousek

et al. [2019] except those on function arguments, which require a whole-program analysis.

For example, consider the variant of the example from §1 in Fig. 16. Here, the snippet defines

let segment_png_small =

𝜆 (img :PNG) → PNG × PNG.

let (𝑎,𝑏) = segment img

png_crop 𝑎, png_crop 𝑏

let segment_png =

𝜆 (img :PNG) → ∗ × ∗. segment img

let png1 : PNG = fst (segment_png (...))
let png2 : PNG = fst (segment_png_small (...))

Fig. 16. Two Type Adapters for an Image Library

two different type adapters for the function

segment, with different truer types. Since

calls to png_crop ensure a tag on each re-

sult, segment_png_small will produce PNGs,
while segment_png will not. At each projec-

tion in segment_png and segment_png_small,
Transient checks that the result is a PNG. This
tag check is however only necessary in the

case of segment_png, where it is not statically
known that (due to other checks) a PNG would
be produced. Precisely this difference between segment_png and segment_png_small, which
allows eliding a check in one case but not the other, is reflected in their truer types!

In terms of the rules of the truer type system from Fig. 13, all rules that involve an expression

that performs a check of a tag 𝐾 strengthen the type of the expression to 𝐾 ⊓𝜏 . Hence, the tag check
improves what can be statically known about the behavior of the expression in hand — rather than

only knowing that it behaves according to 𝜏 , we also know that it behaves according to 𝐾 . As a

result, such a tag check is useful only when the strengthened type (𝐾 ⊓𝜏 ≠ 𝜏) is more precise than 𝜏

— that is, when it is not already known that the value in question would behave like a 𝐾 (𝜏 ⪯̸ 𝐾).

Fig. 17 provides an overview of an elision pass for redundant tag checks. The judgment Γ ⊢opt 𝑒 :
𝜏 ⇝ 𝑒 consumes a typing environment and a 𝜆ICTL expression 𝑒 , type checks 𝑒 at 𝜏 the same way as

the truer type system for 𝜆ICTL, and uses the deduced types to translate 𝑒 to an equivalent expression

𝑒′ without some redundant tag checks. In essence, the translation replaces a type ascription 𝜏 with

𝐾 \ 𝜏 where 𝐾 is a tag that the translated expression checks. In general, 𝐾 \ 𝜏 denotes the tag check
that is necessary to enforce 𝐾 given that 𝜏 is already known — in the typing lattice, this is ∗ if
𝜏 ⩽: 𝐾 , and 𝐾 otherwise. The elision pass preserves contextual equivalence:

Theorem 5.12 (Check-elision soundness). If Γ ⊢opt 𝑒 : 𝜏 ⇝ 𝑒′, then Γ ⊢tru 𝑒 ≈ctx 𝑒′ : 𝜏 .

6 RELATEDWORK AND CONCLUSION
Other Systems. We conjecture that vigilance applies to gradually typed languages with features

other than the ones herein with the help of standard logical relations techniques. For instance,

logical relations for higher-order mutable state [Ahmed 2004] are thoroughly explored in the

literature, and can be the foundation for applying vigilance to gradually typed languages with

references. More generally, vigilance determines whether a typing history is enforced, not by

prescribing how checks happen, but rather by requiring that the checks that do happen entail the

125:26 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

semantics of the term’s type. As a result, given a logical relation that describes the semantics of the

types of a language, vigilance can be applied regardless of the mechanism of dynamic enforcement.

A number of gradual typing approaches aim to improve the performance of Natural gradual
typing by eliminating unnecessary proxies. Space-efficient gradual typing [Herman et al. 2010]

employs a coercion-based evaluation language, which plays the role of our ICTL, where coercions

summarize stacks of type casts around a value. Threesomes [Siek and Wadler 2010] use a cast-

based evaluation language where a cast contains a triplet of types instead of a pair. Such casts can

be combined to reduce the number of dynamic checks. Collapsible contracts [Feltey et al. 2018]

target specific pathologies for the performance of Typed Racket by carefully merging the contracts

generated from types at the boundary between untyped and typed code. Space-efficient manifest

contracts [Greenberg 2015] come with a collection of strategies that restrict the accumulation of

proxies around a value by removing them — some strategies preserve the meaning of programs,

while others do not. Monotonic references [Siek et al. 2015b] builds on space-efficient gradual typing

and threesomes to reduce the runtime performance of gradually typed heaps. In all these cases, we

conjecture vigilance offers a way to examine the guarantees when these cost-saving approaches

are applied to Natural gradual typing. In particular, vigilance can validate the enforcement of the

casts resulting from each strategy is sufficient to enforce the same typing histories.

Applying vigilance to approaches that come with advanced typing features may require some

expertise and care. For instance, for a gradually typed language with polymorphism, the core

structure of the logical relation for vigilance can follow from well understood semantic models of

polymorphism [Ahmed 2006]. However, due to the intricate interaction between type dynamic and

polymorphism [Ahmed et al. 2017; Igarashi et al. 2017; Toro et al. 2019], the parts of the logical

relation of vigilance that are related to typing histories will require redesign and extensions. We

leave demonstrating vigilance for systems such as gradual polymorphism as future work.

Other Properties. Type soundness, the mainstay of statically typed languages, has seen numer-

ous interpretations in the gradually typed world. §2 discusses two different type soundness theorems

and their shortcomings: the standard type soundness and tag soundness, but more interpretations

exist in the literature. Chaudhuri et al. [2017] prove type soundness but only for fully annotated

GTL programs. Muehlboeck and Tate [2017] prove a type soundness theorem for a restrictive

nominal gradual type system rather than a typical structural gradual type system. Tobin-Hochstadt

and Felleisen [2006]’s type soundness concerns a migratory setting where the components of a GTL

program have either all or none of their annotations. Vitousek et al. [2017] establish an “open-world”

type soundness theorem for a GTL with Transient semantics that guarantees a well-typed program

produces either a tag-typed result or certain run-time errors. These properties are all variants of

syntactic type soundness. Vigilance is a semantic property that goes beyond type soundness.

Siek et al. [2015a] propose the gradual guarantees as a standard for gradually typed languages.

Even though the gradual guarantees are useful guidelines for language designers, they are orthog-

onal to the question of whether the translation-and-semantics combination is a good match for

a gradual type system. The static gradual guarantee concerns only the static type system. The

dynamic one can be true for a translation and semantics combination that enforces no types at

all. From the languages we examine in this paper, the one with the truer type system violates the

static gradual guarantee. The example in Fig. 18 demonstrates why. The return type annotation

for function foo allows the truer type system to accept that the components of foo’s argument

are natural numbers; it expects that the translation will insert and the semantics will perform the

corresponding tag checks. As a result, given that function bar simply returns the result of applying

foo to its argument, the example type checks. However, if we were to change the return annotation

of foo to ∗, the truer type system would not be able to decide that the result of foo is a pair of

Gradually Typed Languages Should Be Vigilant! 125:27

naturals, and the example would not type check. Fundamentally, truer typing is flow sensitive

and relies on the propagation of “type facts” derived from type annotations through the control

flow of a program. Hence, changing the type annotations may affect the outcome of type checking

drastically. That said, truer typing is an exercise that demonstrates the power of vigilance — we

leave concerns about the gradual guarantees to future work.

let foo = 𝜆 (𝑥 :∗×∗) → Nat×Nat. ⟨fst𝑥, snd𝑥 ⟩
let bar = 𝜆 (𝑥 :∗×∗) → Nat×Nat. foo 𝑥

Fig. 18. Truer: Counterex. to static gradual guarantee

Gradual Type Theory [New et al. 2019, 2021]

axiomatizes the dynamic gradual guarantee and

a set of contextual equivalence properties as

the essence of a well-designed gradually typed

language. They show that only a GTL with a simple type system and Natural semantics lives up to

this standard, while vigilance shows that even outside this combination, language designers can

still rely on type annotations to make decisions about their type system, enforcement, and tooling.

Jacobs et al. [2021] propose an alternative to the gradual guarantees that requires that the

embedding of a fully statically typed subset of the GTL into the GTL be fully abstract. We leave it

to future work to investigate if vigilance has any connection to properties of this embedding.

Abstracting Gradual Typing (AGT) [Garcia et al. 2016] does not propose a new property but is a

method for obtaining a well-designed gradually typed language from a typed one.

There is a significant body of work on equipping gradual type systems with blame in a correct

manner [Ahmed et al. 2011; Greenman et al. 2023, 2019a; Vitousek et al. 2017; Wadler and Findler

2009]. Vigilance currently says nothing about blame. Vigilance is concerned with a semantics of

types, both static in the form of the typing system and dynamic in the form of boundary annotations.

Blame is instead concerned with the mechanisms for providing error messages that developers can

use in debugging [Lazarek et al. 2021, 2023]. We conjecture that with additional instrumentation in

our logical relation that requires errors at locations informed by typing histories instead of generic

errors, we can incorporate properties about blame, but leave that as future work.

Conclusion. Vigilance is a semantic property that describes a gradual type system as three

components that work together to validate and recover incomplete type information. When the

statics relies on the translation and the dynamics, but the latter two do not deliver, the meaning of

types becomes misleading, making type-based reasoning principles faulty. When the translation

and the dynamics offer more than what the statics can capture, there is a missed opportunity to

increase the strength of the statics, or decrease the amount of dynamic type checks. Vigilance is

a compass for exploring the design space, finding adequate design points, and hence, identifying

opportunities to incorporate strong reasoning principles into the design of gradual type systems.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation (NSF awards

CCF-1910522 and CCF-2237984) and the Defense Advanced Research Projects Agency (DARPA)

under Contract No. N66001-21-C-4023. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect the views of the

funding agencies.

REFERENCES
Amal Ahmed. 2006. Step-indexed syntactic logical relations for recursive and quantified types. In European Symposium on

Programming. Springer, 69–83. https://doi.org/10.1007/11693024_6

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11). Association
for Computing Machinery, New York, NY, USA, 201–214. https://doi.org/10.1145/1926385.1926409

https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1926385.1926409

125:28 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for free for free: parametricity, with and

without types. Proc. ACM Program. Lang. 1, ICFP, Article 39 (aug 2017), 28 pages. https://doi.org/10.1145/3110283

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. USA. https://dl.acm.org/doi/10.5555/

1037736

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. ACM Trans. Program. Lang. Syst. 23, 5 (sep 2001), 657–683. https://doi.org/10.1145/504709.504712

Felipe Bañados Schwerter, Alison M. Clark, Khurram A. Jafery, and Ronald Garcia. 2021. Abstracting Gradual Typing

Moving Forward: Precise and Space-Efficient. Proc. ACM Program. Lang. 5, POPL, Article 61 (jan 2021), 28 pages.

https://doi.org/10.1145/3434342

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levy. 2017. Fast and Precise Type Checking

for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA (2017), 56:1–56:30. https://doi.org/10.1145/3133872

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In

European Symposium on Programming. https://doi.org/10.1007/978-3-642-28869-2_11

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible

Contracts: Fixing a Pathology of Gradual Typing. 2, OOPSLA (2018), 133:1–133:27. https://doi.org/10.1145/3276503

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In ACM SIGPLAN Symposium on
Principles of Programming Languages. 429–442. https://doi.org/10.1145/2837614.2837670

Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 181–194. https://doi.org/10.1145/2676726.2676967

Ben Greenman. 2022. Deep and shallow types for gradual languages. In PLDI. 580–593. https://doi.org/10.1145/3519939.

3523430

Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. Typed–Untyped Interactions: A Comparative Analysis.

ACM Trans. Program. Lang. Syst. 45, 1, Article 4 (mar 2023), 54 pages. https://doi.org/10.1145/3579833

Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. 2, ICFP (2018), 71:1–71:32.

https://doi.org/10.1145/3234594

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019a. Complete Monitors for Gradual Types. PACMPL 3,

OOPSLA (2019), 122:1–122:29. https://doi.org/10.1145/3360548

Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. A Transient Semantics for Typed Racket.

Art Sci. Eng. Program. 6, 2 (2022), 9. https://doi.org/10.22152/programming-journal.org/2022/6/9

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019b.

How to Evaluate the Performance of Gradual Typing Systems. 29, e4 (2019). https://doi.org/10.1017/S0956796818000217

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher Order Symbol. Comput. 23,
2 (jun 2010), 167–189. https://doi.org/10.1007/s10990-011-9066-z

Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. Proc. ACM Program. Lang. 1,
ICFP (2017), 40:1–40:29. https://doi.org/10.1145/3110284

Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully Abstract from Static to Gradual. Proc. ACM Program.
Lang. 5, POPL, Article 7 (jan 2021), 30 pages. https://doi.org/10.1145/3434288

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward Efficient Gradual Typing for Struc-

tural Types via Coercions. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 517–532.

https://doi.org/10.1145/3314221.3314627

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to Evaluate Blame for Gradual Types.

5, ICFP (2021), 68:1–68:29. https://doi.org/10.1145/3473573

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. How to Evaluate Blame for Gradual Types,

Part 2. 7, ICFP (2023), 159–186. https://doi.org/10.1145/3607836

Jacob Matthews and Robert Bruce Findler. 2009. Operational Semantics for Multi-Language Programs. ACM Trans. Program.
Lang. Syst. 31, 3, Article 12 (apr 2009), 44 pages. https://doi.org/10.1145/1498926.1498930

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 56:1–56:30. https://doi.org/10.1145/3133880

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. 3, POPL (2019), 15:1 — 15:31. https:

//doi.org/10.1145/3290328

Max S. New, Daniel R. Licata, and Amal Ahmed. 2021. Gradual type theory. Journal of Functional Programming 31 (2021),

e21. https://doi.org/10.1017/S0956796821000125

Susan Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM
19, 5 (may 1976), 279–285. https://doi.org/10.1145/360051.360224

Andrew Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. In Higher Order Operational
Techniques in Semantics, Andrew Gordon and Andrew Pitts (Eds.). Publications of the Newton Institute, Cambridge

https://doi.org/10.1145/3110283
https://dl.acm.org/doi/10.5555/1037736
https://dl.acm.org/doi/10.5555/1037736
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3434342
https://doi.org/10.1145/3133872
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/3276503
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3579833
https://doi.org/10.1145/3234594
https://doi.org/10.1145/3360548
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/3110284
https://doi.org/10.1145/3434288
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1145/3473573
https://doi.org/10.1145/3607836
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://doi.org/10.1017/S0956796821000125
https://doi.org/10.1145/360051.360224

Gradually Typed Languages Should Be Vigilant! 125:29

University Press, 227–273. http://www.inf.ed.ac.uk/~stark/operfl.html

Uday S. Reddy and Hongseok Yang. 2003. Correctness of Data Representations Involving Heap Data Structures. In

Programming Languages and Systems, Pierpaolo Degano (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 223–237.

https://dl.acm.org/doi/10.5555/1765712.1765730

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the 2006 Workshop on
Scheme and Functional Programming Workshop. 81–92. http://scheme2006.cs.uchicago.edu/13-siek.pdf

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined Criteria for Gradual Typing. In

1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic references

for efficient gradual typing. In Programming Languages and Systems: 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015, Proceedings 24. Springer, 432–456. https://doi.org/10.1007/978-3-662-46669-8_18

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). Association for

Computing Machinery, New York, NY, USA, 365–376. https://doi.org/10.1145/1706299.1706342

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In Dynamic
Languages Symposium. 964–974. https://doi.org/10.1145/1176617.1176755

Matías Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricty, Revisited. Proc. ACM Program. Lang. 3, POPL
(2019), 17:1–17:30. https://doi.org/10.1145/3290330

Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and Evaluating Transient Gradual Typing.

In Proceedings of the 15th ACM SIGPLAN International Symposium on Dynamic Languages (Athens, Greece) (DLS 2019).
Association for Computing Machinery, New York, NY, USA, 28–41. https://doi.org/10.1145/3359619.3359742

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and

Collaborative Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 762–774.

https://doi.org/10.1145/3009837.3009849

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European
Symposium on Programming Languages and Systems: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009 (York, UK) (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1–16. https://doi.org/10.1007/978-3-

642-00590-9_1

Received 20-OCT-2023; accepted 2024-02-24

http://www.inf.ed.ac.uk/~stark/operfl.html
https://dl.acm.org/doi/10.5555/1765712.1765730
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1007/978-3-662-46669-8_18
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/3290330
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1

	Abstract
	1 VIGILANCE, A NEW ANALYTICAL INSTRUMENT FOR GRADUAL TYPING
	2 MOTIVATION AND THE MAIN IDEAS BY EXAMPLE
	2.1 Natural and Transient Gradual Typing in one Framework
	2.2 The Gap Between Statics and Dynamics for Transient
	2.3 Type Soundness is Not Enough
	2.4 Complete Monitoring is Not Enough
	2.5 Enter Vigilance
	2.6 Vigilance: By Example
	2.7 Vigilance: An Examination of Transient
	2.8 Vigilance: Towards Truer Transient Types
	2.9 Technical Contributions

	3 FROM A GTL TO AN ICTL WITH TWO SEMANTICS
	3.1 A Natural and a Transient Semantics for ICTL

	4 VIGILANCE, FORMALLY
	5 TRANSIENT IS MORE THAN TAG CHECKING
	5.1 A Truer Type System for ICTL
	5.2 Translating GTL to ICTL for Truer
	5.3 Flow and Transient are Vigilant for Truer Typing
	5.4 When are Transient Checks Truly Needed?

	6 RELATED WORK AND CONCLUSION
	References

