Gradually Typed Languages Should Be Vigilant!

CONTENTS
Contents
1 Common Definitions
1.1 Evaluation Language Definitions
1.2 Operational Semantics
1.3 Store-Based Evaluation Language Definitions
1.4 Store-Based Operational Semantics
1.5 Store-Based Operational Semantics Example
1.6 Operational Semantics Simulation Result
2 Simple Typing
2.1 Simple Definitions
3 Tag Typing
3.1 Definition
3.2 Simple Typing Implies Tag Typing
4 Truer Transient Typing
4.1 Definition
4.2 Simple Typing Implies Truer Transient Typing
43 Tag Typing Implies Truer Transient Typing
5 Vigilance for Simple Typing
5.1 Vigilance Logical Relation for Simple Typing
5.2 Vigilance Fundamental Property for Natural with Simple Typing
6 Vigilance for Truer Typing
6.1 Vigilance Logical Relation for Truer Typing
6.2 Vigilance Fundamental Property for Transient with Truer Transient Typing
7 Vigilance for Tag Typing
7.1 Vigilance Logical Relation for Tag Typing
7.2 Vigilance Fundamental Property for Transient with Tag Typing
8 Contextual equivalence
8.1 Contextual Equivalence Logical Relation—No Store
8.2 Context typing
8.3 Contextual equivalence statement
8.4 Binary relation—Proofs
8.5 Context relation—Proofs
8.6 Check optimization
8.7 Check-elision—Proofs
9 GTL

=) WY~ R (G R

—_

13
13
15
15
16
17
17
19
23
24
24
27
47
47
47
68
68
72
73
73
74
76
76
89
92
94
97

Author’s address:

2024-03-08 17:45. Page 1 of 1-109.

9.1 Universal Translation

9.2 Flow-Sensitive Translation

10 Vigilance Results for GTLs

10.1 GTL Vigilance for Simple Typing with Natural Semantics
10.2 GTL Vigilance for Tag Typing with Transient Semantics

10.3 GTL Vigilance for Truer Transient Typing with Transient Semantics

1 Common Definitions

1.1 Evaluation Language Definitions

Evaluation Language ‘

98
102
109
109
109
109

v = n|i| True| False | {v,0) | w
w = AMx:r).e|grd{r=1}w
E = []|(E e)| (v,E) | fst{r} E | snd{r} E | app{r} Ee | app{r}v E|Ee|vE| binopEe | binopvE

| cast{r <=1} E|if Etheneelsee| mon{r < r}E | assertrE
Err® == Wrong
Err® = DivErr | TypeErr(z, v)
Err = Err® | Err®

e = Err|x|n|i|A(x:7).e|{ee)|app{r}ee|ee]|fst{r}e|snd{r}e| binopee|cast{r =1’} e

| ifetheneelsee | mon{r<rt}e|grd{r & r}e|assertre

K z= Nat | Int | Bool | sX3 | % — x| *
T == Nat | Int | Bool | tx7 | 7—>7 | *
binop := sum | quotient

n =N

i = Z

True
if Ko = Natandoy € N
orKg=Intand oy € Z
or Ko = Booland vy € B
vg < Ko = or Ky = *x* and vy € (v,v)

orKyp=*—s*andovg € w

or K() = %
False
otherwise

2024-03-08 17:45. Page 2 of 1-109.

Gradually Typed Languages Should Be Vigilant!

§ : binopxuoxv — e

io + i1
if binop = sum{r}
DivErr
5(binop, io,iy) = if binop = quotient{r}
andi; =0
Lio/i1]
if binop = quotient{r}
andi; # 0

océos: X0 — B

L L L
Lo pd TV Cmon T VXS T
N | oo [1] v 7] True
T| v 1] True v |7]

2024-03-08 17:45. Page 3 of 1-109.

1.2 Operational Semantics

—

reflexive-transitive closure of — L

compatible closure of <,

er—, e

L

fst{zo} vo
ifog # (v1,02)

fst{zo} (vo, v1)

Snd{T()} 00
if vg # (v1,02)

snd{zo} {vo,v1)

binop vy v1

L

)—)L

Wrong

assert 7p vg

Wrong

assert 79 v1

Wrong

if §(binop, v, v1) is undefined

binop vy v1

—, assert 1y §(binop, vy, v1)

if §(binop, vy, v1) is defined

app{ro} vo 01

0o U1

if o9 # wo

(A(xo:71). e0) 01
: L
if oy OCcheck n
(A(xo:71). €0) v1
: L
if ~o; Ceheck T

(grd {r1 & 12} wo) 01

cast {T1 &= T()} 0o
: L
lfUO chnd 1
L
and vg ocp 1 70

L

assert 79 (vg v1)

Wrong

eo[x0 < v1]

TypeErr(zy, v1)

mon {cod(r1) < cod(t2)} (wg (mon {dom(ry) < dom(ty)}v1))

mon {r; & 19} 0o

2024-03-08 17:45. Page 4 of 1-109.

Gradually Typed Languages Should Be Vigilant!

cast{r; & 1o} g =, TypeErr(zy, vp)
: L
if =g oy Tl

cast{r; & 10} vo =, TypeErr(7o, vo)
: L
if =g ocp 1 70

mon {r; < 12} ip L)

s L L
if iy ocpon T1 A lo Son T2

mon {71 & 12} (vg,v1) >, (mon {fst(r1) < fst(12)} vo, mon {snd(r;) < snd(r2)} v1)

mon{r; = 2} w —, grd{nn = n}w
ifwok nAwek

mon {7y < 11} g —, TypeErr(z, vo)
if —og ocfnon 70

mon {7y < 11} 0o =, TypeErr(ry, v9)
if =vg ok, 71

if True thenej elsee; >, e

if False then e; else ez >, e

assert 1o 0o > 0o
: L
lfU() ‘xcheck 70
assert 79 vg —, TypeErr(ro, vo)
: L
if —vg X check T0

2024-03-08 17:45. Page 5 of 1-109.

1.3 Store-Based Evaluation Language Definitions

Store-Based Evaluation Language

t|n|i| True|False| (£, t) | A(x:7).e
Err® == Wrong
Err® = DivErr | TypeErr(z, v)

0

Err = Err® | Err®

e = Err|x|€]o|{ee)|app{rtee|ee|fst{r}e]|snd{r}e| binopee|cast{r =7'}e
| ifetheneelsee| mon{r <rt}e|assertre

K i= Nat | Int | Bool | #X3x | % —x | *

T i= Nat | Int | Bool | tx7 | 7—>7| *

binop = sum | quotient

by € L+ Vxoption(T xT)

t e L

n € N

i e Z

E = [11(Ee) | ({,E)|fst{c}E|snd{r} E | app{r} Ee | app{r} £ E|Ee |t E| binopEe | binopt E

| cast{r <=7’} E|if Etheneelsee| mon{r &< r}E|asserttE

True
if Ko = Natandoy € N
or Ko =Intand oy € Z
or Ky = Bool and vy € B

vg x Ky = or Ko = * X xand vg € (£,)

orKop =* — xand oy € A(x:7).e

or Ko = *
False
otherwise

8 : binopxVxV — E

i + i1
if binop = sum{r}

DivErr

5(binop, o, i) = if binop = quotient{z}
andi; =0

Lio/i1]
if binop = quotient{r}
and iy # 0

2024-03-08 17:45. Page 6 of 1-109.

Gradually Typed Languages Should Be Vigilant!

of,s: TXV — B

L L L
Lo “bnd T P %monT VX peck T
N | vo 7] voc|7] True
T| v |r] True voc 7]

Js1(2(0))
if fst(Z(¢€)) # ¢/
pointsto(Z,)
if fst(Z(¢)) =t/

pointsto(Z, £) =

2024-03-08 17:45. Page 7 of 1-109.

1.4 Store-Based Operational Semantics

reflexive-transitive closure of — I

compatible closure of <,

e, Xe

3,0 —, X[+ (v,none)],?
where loc ¢ dom(X)

3, fst{ro} to —, Z,Wrong
if 2 () # ({1, £2),)

3, fst{ro} fo —, X, assertt
if 3(f) = ({1, 2), _)

Y, snd{ro} fo >, 2, Wrong
if2(6) # ((t1,6),)

S,snd{ro}ty <, I, assertryfp
if2(f) = (b, &),)

3, binop {y £1 —, Z,Wrong
if §(binop, pointsto(Z, £), pointsto(Z, £1)) is undefined

3, binop {y £ —, X, assert 7o §(binop, pointsto(Z, &), pointsto(Z, £1))
if 6(binop, pointsto(Z, £), pointsto(Z, 1)) is defined

S app{wo} o i <, X, asserttg (£ £1)

2060 —, 3,Wrong
if 2(6) = (v,_)and o ¢ A(x:7).e Ul
or %(fp) = (£, none)

34 4 —, X,eo[xo 0]
if 2(&) = (A(x0:71).€0,_) and

. L
pointsto(2, £1) Ccheck T

2024-03-08 17:45. Page 8 of 1-109.

Gradually Typed Languages Should Be Vigilant!

>, 6 —, X, TypeErr(zy, £1)
if 2(6) = (A(x0:71). €0, _) and
—pointsto(, £1) “Igheck 51

3,6 0 —, X, mon{cod(r1) < cod(r2)} (fo (mon {dom(rs) < dom(r1)} 1))
if (&) = (f2, some(ry, 12))

Z,cast{rl <:To}{’0 =, >, mon {T1 <:T0}l’0
if pointsto(Z, £y) OCII;nd 71
and pointsto(2, £y) ‘xind 70

S,cast{ry =1} & <, X, TypeErr(r, &)
if =pointsto(Z, f) ocind 7]

S,cast{ry =10} o —, = TypeErr(z,)
if =pointsto(Z, {) “Il;nd 70

S,mon{rn & nll <, X[l (f,some(r, 12))], &
if &1 ¢ dom(2)
and pointsto(2, £y) = v where v = i or True or False

L L
and v o0 T1 A O SCpyop T2

S,mon {r; <1}ty <, % (mon {fst(r1) < fit(r2)} &1, mon {snd(r1) < snd(r2)} &)
if 2(6) = ({1, &),)

Emon{n &nltlh —, 2t (f,some(r,2))], &
if ¢ ¢ dom(X)
and pointsto(2, £)) =vand v = A(xg:71). €

L L
and v «pp,, T AU O, T2

Zmon{n =nltl <, 2 TypeErr(r, &)
if ~pointsto(Z,) oL, 71

Smon{rg &}l —, = TypeErr(n, &)

if =pointsto(Z, 6) o<k, 0

3, if fp thenej else ez —, 3, e
if pointsto(2, £y) = True

3,if f thenejelsee; —; X, ez
if pointsto(, £y) = False
2024-03-08 17:45. Page 9 of 1-109.

10

3, if £ then eg else ez —; X, Wrong
if pointsto(Z, £) # ¢ or True or False

>, assert 7y fp —, %0
if pointsto(Z, £y) OCIEheck 70

>, assert 7o & —, I, TypeErr(r, £)
if =pointsto(2, &) “éheck 70

2024-03-08 17:45. Page 10 of 1-109.

Gradually Typed Languages Should Be Vigilant! 11

0,app{*} (Af : Nat— Nat. cast {* < Nat} app{Nat} f 42) (cast {Nat— Nat & *—*} Ax : %.x)

—>*I: {t; (v1,none), £ — (vg, none)}, app{*} £ (cast {Nat— Nat < x—x} £)

—>’2 {1 — (v1,none), £, — (v2, none)}, app{*} £1 (mon {Nat— Nat & *— =})

—>"L {t; > (v1,none), £ — (v, none), f3 — (lz, some(Nat— Nat, *— *))}, app{*} 1 £3
—>*L {t; — (v1,none), £, — (v2, none), f3 — (I, some(Nat— Nat, x— x))}, assert * (£1 £3)
—, {..},assert = cast {x & Nat} app{Nat} &5 42 (7)

—>*L {... €4 > (42,none)}, assert = cast {* & Nat} app{Nat} &5 #4

—>*L {...},assert = cast {* & Nat} assert Nat mon {Nat < =} (3 (mon {* < Nat} #))

Fig. 1. Example of log-based reduction.

1.5 Store-Based Operational Semantics Example

The sequence of reductions in Figure 1 gives a taste of the Store-Based Operational Semantics through the evaluation of
the example expression e from above. The reduction sequence is the same for both Natural and Transient except for
the step marked with (). Up to that point, both semantics store intermediate values in the value log X, check with a
cast that £, points to a function, and, after the check succeeds, create a new label #3 that the updated X associates with
the types from the cast. For step (), both semantics perform a beta-reduction. But via the compatibility metafunction,
Transient also checks that the argument of #; is indeed a function. The two semantics get out of sync again after the
last step of the shown reduction sequence. Specifically, for the remainder of the evaluation, Natural performs checks
due to the monitor expressions such as the ones around #3 and ¢4, while Transient performs the checks stipulated by

assert expressions.

2024-03-08 17:45. Page 11 of 1-109.

12

1.6 Operational Semantics Simulation Result

To compare the two semantics, we have to define a relation that compares values between the two languages. The store

semantics will represent:

(1) Guards as a linked list of pairs of types, ending at a lambda with no types.

(2) Pairs as a pointer to the two subcomponents, with no types.

(3) Base values as a linked list of pairs of types, ending at a base value with no types.

We capture this in the following value equivalence:

2(0) = ((b. 2),)

() =(Ax:1.e,_)

(Z,6) =01 >(¢) = (£',some(7’, 7))
pointsto(Z, £) = v (2, 8) = vy) =0
Z,¢0) =0 (2,0) = {v1,02) E)=grd{r’ =1} v

THEOREM 1.1 (STORE AND NON STORE OPERATIONAL SEMANTICS ARE EQUIVALENT).

e —7 ¢’ and e’ is irreducible iff V3. 3%/, ¢. (3,e) —] (¥',€) and (3',¢) = ¢’

) =Ax:t.e

2024-03-08 17:45. Page 12 of 1-109.

Gradually Typed Languages Should Be Vigilant! 13

2 Simple Typing

2.1 Simple Definitions

Simple language

e = x| n|i|True|False | A(x:7).e| (e,e) | app{r}ee|fst{r}e|snd{r}e | binopee | cast{r < r} e | if e then e else e
T = Nat | Int | Bool | tx7 | 7> 7| *

binop := sum | quotient

r = | T, (x:7)

n =N

VA

....
I

T-VAR
T-NAT T-INT T-TRUE T-FALSE
(x0:70) € To
To Fsim X0 : 7o Iy Fsim o : Nat Ty Fsim o : Int Iy Fsjm True : Bool Ty Fsim False : Bool
T-PAIR
T-Lam To Fsim €0 : 70 T-CasT
To, (x0:70) Fsim €0 : T1 Io Fsim e1: 71 o Fsim €0 : 70
o Fsim A(x0:70). €0 : To— 71 I Fsim (€0, €1) : To X7 Io Fsim cast {r; < 1o} e : 71
T-BiNop
T-Arp To Fsim €0 : 7o
To Fsim €0 : 0 — 71 T-FsT T-SnD Io Fsim €1 : 71

To Fsim €1 : 70 To Fsim €0 : T0X71 To Fsim €0 : T0X71 A(binop, 19, 71) = T2

o Fsim app{z1}eo e1: 71 To Fsim fst{zo} €0 : 70 o Fsim snd{r1}eo : 71 To Fsim binopeg ey : 72
T-Ir
I Fsim €0 : Bool T-Su
To Fsim €1 : 7o To Fsim €0 : 70
Io Fsim €2 : 70 T0 <71
To Fsim if €g then eq else e; : 19 To Fsim €0 : 71
70 <' T2 T <73 T2 S5 1 T <P T3
Nat <: Int TOXT] ' T2 XT3 0T < Ty 70 < T

2024-03-08 17:45. Page 13 of 1-109.

14

A : binopXTXT — T

A(sum, Nat, Nat) = Nat
A(sum, Int, Int) =Int
A(quotient, Nat, Nat) = Nat
A(quotient, Int, Int) =Int

2024-03-08 17:45. Page 14 of 1-109.

Gradually Typed Languages Should Be Vigilant!

3 Tag Typing
3.1 Definition

Simple language

x|n|i| True| False | A(x:7).e| (e, e) | app{r}e

Nat | Int | Bool | X | % — x| *
= sum | quotient
| T, (x:Kop)

N

Z

T-VAR
(x0:Ko) € Iy

T-NAT T-INT

e | fst{r} e | snd{r}e | binopee | cast{r <t} e|if etheneelsee

T-TRUE T-FALSE

Io Ftag X0 : Ko Io Ftag 1o : Nat Io Ftag o : Int

T-PAIR
T-Lam o Fag €0 : Ko

To, (x0:70) Frag €0 : K1 Ip Ftag €1 : K1

Iy +tag True : Bool Iy +tag False : Bool

T-CasT
I Ftag €0 : Ko

L7o] = Ko

o Ftag A(xo:70). €0 : % —* Io Ftag (e, e1) @ #X* Io Frag cast{r; &< 10} e : [71]
T-Binop
To Ftag €0 : Ko
T-Arp To Ftag €1 : Ki
T Ftag €o : % —* T-FsT T-SnD A(binop, Ko, K1) = K2

I Ftag €1 : Ko o Ftag €0 @ X

I0 Frag €0 @ *Xx 2] =K2 V [r2] = %

Io Ftag app{zo} o 1 : [70] Ty Ftag fst{ro} eo : [70]

T-Ir
T Ftag o : Bool
I Ftag €1 : Ko
I Ftag €2 : Ko

To Ftag if eg then ey else ey : Kj

2024-03-08 17:45. Page 15 of 1-109.

To Ftag snd{r1} ey : | 71] To Ftag binopeg e1 : Ky

T-Sus
I Ftag €0 : Ko
Ko <1 K3

To Ftag €0 : Ky

16

3.2 Simple Typing Implies Tag Typing

Tx:0) =T x: 7]

‘+ =

THEOREM 3.1 (SIMPLE TYPING IMPLIES TAG TYPING). IfT bgim €: 7 thenT" biag €2 | 7).

Proor. By induction over the typing derivation. The typing rules have a one to one correspondance, so each case

follows by the induction hypothesis. O

2024-03-08 17:45. Page 16 of 1-109.

Gradually Typed Languages Should Be Vigilant!

4 Truer Transient Typing

4.1 Definition

Simple language

®
1

T =
K =
binop = sum | quotient
r = | T, (x:Ko)
n = N
i =27
tag of
LInt] = Int
[Nat| = Nat
|Bool] = Bool
[tx7t'] = *xx*
[* > '] = «—> =
L] = %

Int

Uz X Ur

* = (12 U 1))

2024-03-08 17:45. Page 17 of 1-109.

Nat | Int | Bool | X7 | *— 7 | % | L

Nat | Int | Bool | sX | % — s | =

if 7=x
orr’ =%
or |r] # |7]
and7# Land 7 # L
ifr =1

ifr=1

if 7=Natand ' =Int

or 7 = Intand 7" = Nat
ifr=1
ifr=rXxXnand 7’ =1 X1

ifr=+—>nand7 =% — 7

Nat

TNz X121

* — (Tzﬂ’l'é)

17

x|n|i| True| False | A(x:K).e | (e,e) | app{K}ee | fst{K}e |snd{K}e | binopee | cast{K < K} e | if e then e else e

if =1
ort/ =1
or 7] # | 7]
and 7 # *and 7’ # *
if 7/ =%

if 7=x

if 7=Natand 7’ =Int

or 7 = Intand 7/ = Nat
ifr=1
ifr=rxXnand7 =1/ X1)

ifr=+—rnand7’ =*— 7

18

T-Var

T-TrRUE
(x0:Ko) € Ty

T-Nat T-INT

T-FALSE

To Ftru x0 : Ko Iy Ftry no : Nat To Firu Qo : Int

T-Pair
T-Lam Io Ftru €0 = To

To, (x0:Ko) Feru €0 : 71 To Ftru €1 : 71

Ty Firy True : Bool

Ty Firy False : Bool

T-CasT

To Ftru €0 : 70

To Ftru A(x0:Ko). €0 : ¥ — 11 To Feru (€0, €1) : ToXT1

T-ArprBoT
To Feru o : L

T-Arp

Io Feru €0t > 11

T-FsT

’ ’
To Ftru €1 : 7 To Firu €1 : 7

To Feru €0 : T0XT

To Firy cast {K] = K()} e : KiMKpMro

T-FstBot
To Ftru €0 @ L

To Ftru app{K1}eo €1 : K1 M1y To Ftru app{Ki}eo €1 : L

T-SnpBot
To Feru€o: L

T-Snp
To Ftru €0 : T0XT1

T Ftru snd{Kl} e KiMn To Feru snd{Kl}eo N

T-Ir T-IrBot
To Ftru €0 : Bool
To Feru €1 : 70

Io Feru €2 1 71

To Feru fSt{Ko} ey : KoMt

Io Feru €0t L
To Ftru €1 : 70

To Ftru €2 : 71

To Feru fSt{Ko} [

T-Binopr
Iy Fru €0 : To

Io Feru €1 : 71

T Fru binopeg eq : A(binop, 1o, 1)

T-Sus
To Ftru €0 = 70

0 <17

Ty Firu if eg then eq else eg : 79 LI 17 Ty Firy if €g then eg

A : binopXTXT — T
A(sum, Nat, Nat) = Nat
A(sum, Int, Int) =Int

A(quotient, Nat, Nat) = Nat
A(quotient, Int,Int) =Int

A(binop, L, 1)
A(binop, 7, L)

=_1Lifr=NatorlIntor L
=_1Lifr=NatorlIntor L

T<T

=T

ToXT] < T2 X713 *—>7T) < *x—>7T1

else ey : L Io Feru €0 : 71

2024-03-08 17:45. Page 18 of 1-109.

Gradually Typed Languages Should Be Vigilant!

4.2 Simple Typing Implies Truer Transient Typing

The following proofs will use the fact honest transient types with LI and M form a lattice ordered by <.

it =i

b* =b

(e1,e2)" =(ef, e5)

(Ax:7.e)* =Ax:|r].e"
(app{r}e; e2)* =app{lr]}e} ef
(fst{z}e)* =fst{[r]}e*
(snd{r}e)* =snd{[r]}e”

(binope ez)” = binope; e}

(cast{r’ =1}e)t =cast{|r']| & |r]}e"

(if e1 then ey else e3)™ = if €] then €] else e}

Tx:o)t =Tt x: 7]

.+ =

LEMMA 4.1 (LATTICE JOIN IDEMPOTENT). TUT =7

Proor. By induction on the structure of 7, in each case following immediately from the definition of LI.

LEMMA 4.2 (LATTICE JOIN ABSORPTION). 79 LI (79 M 71) = 79

19

Proor. By induction on the structure of 7p; in each case by induction on the structure of 71, in each case following

immediately from the definitions of Ll and M and the prior lemma.

LEMMA 4.3 (LATTICE MEET IDEMPOTENT). 7117 =7

Proor. By induction on the structure of 7, in each case following immediately from the definition of M.

LEMMA 4.4 (LATTICE MEET ABSORPTION). 7o I (19 L 71) = 79

]

Proor. By induction on the structure of 7p; in each case by induction on the structure of 71, in each case following

immediately from the definitions of Ll and M and the prior lemma.

LEMMA 4.5 (LATTICE ORDERING IMPLIES <). Ift =717/, thent < 7’.

Proor. We proceed by induction on the structure of the definition of 7 M ¢’:

2024-03-08 17:45. Page 19 of 1-109.

]

20

L Since r =t Mr, 7= L1;itis immediate that 7y < 7.

7 This case occurs if 7/ = *; consequently it is immediate that 7 < 7’.

7/ In this case, the hypothesis ensures that 7 = 7/, so 7 < 7’ by reflexivity.

Nat In this case, 7 must be Nat and " must be Int. By definition, Nat < Int.

r In this case, r = 7/; it is immediate that 7 < 7/.

71 M7y X712 M7, In this case, by the hypothesis, 71 = 71 M 7] and 72 = 12 M 7}, so by induction 71 < 7] and 72 < 7. Then
it is immediate from the definition of the lattice ordering that 71 X7y < T{ X‘ré.

*— 15 M 7} Inthis case, 72 = 72M7) by the hypothesis, so 72 < 7 by induction; hence it is immediate from the definition

of the lattice ordering that + — tauz < *— 7).

LEMMA 4.6 (LATTICE ORDERING IS IMPLIED BY <). If7 < 7/, thent = (M 7’).

Proor. We proceed by induction on the structure of the definition of <, with the cases of <: inlined:

Nat <: Int This is immediate by the definition of M.

10XT] <* 1o X713 This is subsumed by the case 7o X7; < 72 X73 below.

70— 71 < T2 — 13 Because we are considering the lattice of honest transient types, 7o = 72 = *, and this is subsumed
by the case * — 71 < *— 73 below.

790 < 70 This is immediate by the definition of M.

190X71 < 2X73 This rule requires that 7o < 72 and 7; < 73; hence, by induction 79 = 79 M 72 and 7; = 71 M 73. This is
then immediate by the definition of M.

*— 77 < *— 13 This rule requires that 7y < 71, and so by induction 79 = 79 M7y; this is then immediate by the definition
of M.

1 <t This is immediate by the definition of 1.

7 < * This is immediate by the definition of .

THEOREM 4.7 (SIMPLE TYPING IMPLIES TRUER TRANSIENT TYPING).

IfT bgim e : T then T by e i ¢/ wheret’ < | 7).

PRrRoOF. Proceed by induction on the simple typing derivation:

T-Var By the definition of lowering, if x : 7 € T, then x : |r] € T, so T-Var applies and |] is precisely the 7’ such that
I“ret:7and < |7].

T-Nat, T-Int, T-True, T-False For each base type literal, a corresponding rule exists in the honest transient type
system, which ascribes the same time (which is also equal to, and hence below in the lattice, the original simple
type).

T-Lam Consider arbitrary Iy, xo, 70, €g, 71, such that Ty + A(xo :79). €9 : 70 — 71. Then by induction we know that
(T, (x0) : 70)* F € : 77, for some 7] < |71]. Note that (o, (xo : 70))* =T}, xo : | 70] by definition, and similarly
that (Axo : 79.€0)* = A(x0:[70]). €5 by definition. Then T-Lam applies s.t. T + A(x0:Kp). e : *— 7;. Note that
70 = 71] = ¥ —* < *—* by the definition of lattice ordering, completing the proof.

T-Pair Consider arbitrary Iy, e, e1, 70, 71, s.t. Ip + e : 7 by simple typing rule T-Pair if e = (eg, e1) and 7 = 79 X7;. Then
by induction, there exist some 7/ and 77, s.t. 1"0+ F eaf L 15 1"0+ el i, 75 < |70, and 7] < [71]. Then instantiate

2024-03-08 17:45. Page 20 of 1-109.

Gradually Typed Languages Should Be Vigilant! 21

7’ = 79 X11; it is clear that the honest transient typing rule T-Pair applies, since ({eo, e1))* = (ej, €], and it is
immediate by the definition of < that 7/ < |[79X1;] = *Xx*.

T-Cast Consider arbitrary I, eg, 70, 71, s.t. Ip F e : 7 by simple typing rule T-Cast if e = cast {rp < 71} €9 and 7 = ;.
Then by induction, I + ef : 7] for some 7; s.t. 7) < | 70]. Instantiate 7’ by 71| M | 70] M 7; then it is clear that
the honest transient typing rule T-Cast applies, since by definition e* = cast {| 7p] < [71]} eaf, It remains to be
shown that [71] M [7o] M 7} < | 71]; this follows immediately from the properties of the lattice meet operation.

T-App Consider arbitrary Iy, eg, 70, 71 s.t. Iy F e : 7 by simple typing rule T-App if e = app{r1} ¢ €1 and 7 = 7y. Then
by induction, T + €] : 7; for some 7; < |79 —71] = *—*, and I} + ef : 7; for some 7] < | 0. By inspection
of <, note that 7; must be either L or * — 7] for some /. Note that et =app{[r1]} ¢ e, and so in the former
case T-AppBot syntactically applies and in the latter T-App; consider each case:

77 = L: Instantiate 7" = 1; then it is clear that Tj +- ¢’ : 7’ by T-AppBot. Then L < | 7] is immediate by the
definition of lattice ordering.

1) = +—17: Instantiate 7’ = | 71| M/; then it is clear that I + €’ : 7" by T-App, so what remains to be shown is
that | 71| M 7; < | r1]; this is immediate by the definition of meet on a lattice.

T-Fst Consider arbitrary Iy, eo, 79, 71, s.t. Ip + e : 7 by simple typing rule T-Fst with premise Iy + ey : 79X 17 if
e = fst{zo} eg and 7 = 7. Then, by induction, Ij + e : r;, s.t. T;, < |79 X11] = *Xx*. By inspection on <, note that
T;, must be either L or 7, x1,] for some 7, and 7. Since e* = fst{| 79|} e;, the rule T-FstBot applies in the
former case, and similarly T-Fst applies in the latter. Consider each of these cases:

7, = L: Instantiate 7’ = 1; I + e : 7’ by T-FstBot, and L < | o] follows immediately from the definition of
lattice ordering.

Tl’, = Tpo X Tp1: Instantiate 7’ with | 7] M 7. Then Iy ket : 7/ by T-Fst,and 1’ < | 1o] by the the definition of
meet on a lattice.

T-Snd Consider arbitrary Iy, eg, 70, 71, s.t. Ip F e : 7 by simple typing rule T-Snd with premise Iy + ey : 79X 77 if
e = snd{71} ep and 7 = 1. Then, by induction, I“(; Fe: 1'1’, s.t. r;, < |moX71] = *X*. By inspection on <, note that
TI’, must be either L or 7, x1p for some 7, and 7, . Since et =snd{|71]} e(‘;, the rule T-SndBot applies in the
former case, and similarly T-Snd applies in the latter. Consider each of these cases:

Tj’, = 1: Instantiate 7/ = L; FJ et : 7/ by T-SndBot, and L < | 71] follows immediately from the definition of
lattice ordering.

T, = TpoX7p}: Instantiate 7’ with [71] M7p]. Then I + e : 7/ by T-Snd, and 7’ < | 71] by the the definition of
meet on a lattice.

T-Binop Consider arbitrary Iy, binop, ey, e1, 79, 71, and 72, s.t. Iy I e : 7 by simple typing rule T-Binop with premise
A(binop, 79, 71) = 72 if e = binopeg e; and 7 = 72. By induction, note that I + ej : 7, for some 7} < | o], and
T+ ef : 7] for some 7] < |71]. Note that for the simple typing A(binop, 7o, 71) to be defined, 7o and 7; must
each be either Nat or Int; consequently, by inspection of the lattice order, 1'6 and T{ must each be Nat, Int, or L.
Then by inspection, in any such case, A(binop, 1'(’), T{) is defined and < A(binop, 79, 71) = 2. Then instantiate 7’
with 2] M A(binop, 7}, 7;); since e* = binopeg e1, the rule S-Binop applies, and by the definition of meet on a
lattice, | 2] < 7’.

T-If Consider arbitrary T, eg, e1, ez, 7o, s.t. Ip + if e; then ey else es : 7y by the T-If simple typing rule. Let
e = if e; then ey else e3 and 7 = 7y. Then by induction, there exist some 7, < |Bool] = Bool, T(') < |w), and

7 < lnol st T Feg 7, I ke 75, and I :+ e} : 7). Notice that 7/, may be only L or Bool, by the definition

2024-03-08 17:45. Page 21 of 1-109.

22

of lattice ordering. Since e* = if e then e} else e], in the former case the rule T-IfBot applies; in the latter the
rule T-If applies. Consider each of these cases:
T]; = 1: By T-IfBot, I e* : 1, so instantiate 7’ = L. Notice then that L < | 7] by lattice ordering, so the proof
is completed.
7, = Bool: By T-If, [+ € : 7j U 7]. Instantiate 7’ by 7; U 7{; then we must show that 7’ < |z]. Since
75 < |70] and 7] < |70, | 7] is an upper bound of 7 and 1. By the definition of join on a lattice, 7] LI 7] is
less-than-or-equal-to any other upper bound of 7y and 73, so this is shown.
T-Sub Consider arbitrary Ty, e, 71, 79, s.t. Iy + e : 7 by simple typing rule T-Sub with premise 7y <: 77 if e = ep and
7 = 71. By induction, Ty e* : 7, for some 7/ < | 79]. Then instantiate 7" = 7. It is immediate that [+ et st
remains to be shown that 7’ < |7]. Since 79 < 71, 70 < 71. By Lemma 4.8, | 9] < |71]. Then by Lemma 4.9,

T =1 < || < |lnlsor < |l

LEMMA 4.8 (LATTICE ORDERING IS PRESERVED BY TAG-OF). If 1y < 11, then |10 < |71].
PRrRoOF. By cases on the structure of the definition of <; in each case the lemma is immediate. [}
LEMMA 4.9 (LATTICE ORDERING IS TRANSITIVE). If7 < 7/ and v’ < 1"/, thent < ¢,

Proor. By induction on the structure of the definition of 7 < 7’ (generalized with respect to 7’’), with the cases of
<: inlined:

Nat <: Int: Since by assumption Int < 7”, it is clear by inspection that 7’/ must be either Int or *; in either case
Nat <: 7”7 is immediate.

T0X71 <* 72X73: This is subsumed by the case 7o X711 < 72 X73 below.

10— 11 < 7o — 13: Because we are considering the lattice of honest transient types, 7o = 72 = *, and this is subsumed
by the case * — 71 < *— 13 below.

7 < 1: Since by assumption 7’ < "/, r =17 < 13.

ToX71 < T2X73: Since by assumption 7’ = 7oX73 < 77/, it is clear that 7"/ must be either * or 7}’ x7}” for some 7;’, 7{’ s.t.
T < Té’ and 13 < T{’ .If 77 is #, the lemma follows immediately. Otherwise, note that this rule requires that
70 < 12 and 73 < 73; hence, by induction, 7y < r(;' and 11 < r{' , and therefore 7 < 7’

*— 1) < *—13: Since by assumption 7" = x— 13 < 7/, it is clear that 7" must be either * or *— 7]’ for some 77’ s.t.
13 < 17 If 7”7 is *, the lemma follows immediately. Otherwise, note that this rule requires that 7 < r3; hence,
by induction, r; < 7;’, and therefore 7 < ',

1 <7 7=_1 < 7" is immediate by the definition of lattice ordering.

7 < * Since by assumption 7/ = * < 7/, 7’/ must be #, and so the lemma follows immediately.

2024-03-08 17:45. Page 22 of 1-109.

Gradually Typed Languages Should Be Vigilant! 23

4.3 Tag Typing Implies Truer Transient Typing

THEOREM 4.10 (TAG TYPING IMPLIES TRUER TRANSIENT TYPING). IfT tiag € : K then 37 < K such thatT by e : T

Proor. By induction over the tag typing derivation.

TVar TN TI TT TF
-NAT -INT -1RUE -FALSE
(x0:Ko) € Ty
To Ftag X0 : Ko To Ftag no : Nat To Ftag io : Int Io Ftag True : Bool T Ftag False : Bool

These cases are immediate by applying the corresponding truer typing rule and from premises.

T-Ir
T-PAIR T Ftag €0 : Bool T-Sus
T-Lam o Fag €0 : Ko I Frag €1 : Ko To Fag €0 : Ko
To, (x0:Ko) Frag €0 : K1 To Frag €1 : K1 I Ftag €2 : Ko Ko <t Ky
To Ftag A(x0:Kp). €0 : % — * Io Ftag (€0, 1) : *Xx* Io Ftag if €g then eg else ez : Ko Ip ttag €0 : K1

These cases follows by the induction hypothesis and the corresponding rule.

T-Arp
To Ftag €0 : % — % T-FsT T-SnD
Ty Ftag €1 : Ko I Ftag €0 @ *Xx o Ftag €0 @ X
To Frag app{Ki}eo €1 : Ki T Ftag fst{Ko} o : Ko To Frag snd{K1} eo : K1

These cases follow by induction and their corresponding typing rule, with the caveat that if the truer type of the

premise is L, the corresponding bot rule must be used.

T-CasT
Io Ftag €0 : Ko
Ko ~ K1

To Ftag cast {K] = Ko} e : Kq

This case follows by induction and applying the bnd rule in truer, noting truer doesn’t require any relationships

between the type of what’s underneath and the tags on the bnds.

T-Binop

To Ftag €0 : Ko

Ty Ftag €1 : K;
A(binop, Ko, K1) = K3

To Ftag binopeo e1: Ky

This case follows by induction, noting that if either of the truer types corresponding to Ky or Kj are L, then the
result type is L. If the truer types are different, ie one is Nat and the other Int, we apply subsumption to get both at Int,
and then can apply the binop rule. Otherwise, we directly apply the binop rule.

2024-03-08 17:45. Page 23 of 1-109.

24

5 Vigilance for Simple Typing

In this section, V7T refers to (VsiTm’ ET refers to SSTim, VHT refers to VHL and VHT refers to VHE

sim’ sim*

5.1 Vigilance Logical Relation for Simple Typing
[T Feim e:7]* £ V(k ¥, 2,y) € GE[T] where = : (k,¥). (k, ¥, %, y(e)) € EF[]

GH[Nx o] 2 (k.S y[x - £]) | (k ¥, %.y) € GH[T]
A€ € dom(¥) A £ ¢ dom(y)
A (kY 30) € VE[]}

GLle] = {(k, 2.%,0)}

FX 2 Ve e dom(R). 2(¢) = ((¢/,some(7’, 7)) A T’ « pointsto(3, £) A T « pointsto(3, £)
A = xx oc pointsto(Z, £))

V X(¢) = (v, none) where v ¢ L

3 (kY) 2 dom(Z) = dom(¥) A F X A Vj <k tedom(E).((j,¥.5,) € VHI[¥(0)]
A (S(0) = (£, some(r, 7)) = Y(0) = [r. 7, ¥ () AYE) = [,] AT < 1)
A (2(8) = (v,none) Ao ¢ L = 3r.%(¢) = [1]))

This is an unfolded version of the definition in the paper. We break up the definition there for ease of explanation, and

unfold here for ease of use.

(,¥) 3 (kW) 2 j < k AVE € dom(¥). ¥ (£) = ¥(0)

EHM[T] 2 {(k V.5) | Vi < k.VE 25, (Se) —] (2,¢/) Adrred(e))
= (¢/=Err* v @Ak-j,¥)3(k¥).3: (k- j¥)A (k- ¥, 5, ¢) e VHE[T])}

(V‘T{L[[Int,rz,...rn]] 2 {(k,?,%,¢) |Vr € [Int,1o,...1]. (k, ¥, 3, 0) € (VL|[T]]}
VHE[Nat, 72, ... 7] £ {(k, ¥, €) | Vr € [Nat, 12,... 7]. (k, ¥, %, £) € VE[7]}
VH[Bool, 7, ... 7] £ {(k, ¥, 3, ¢) | V1 € [Bool, 13, ... 7). (k, ¥, %, ¢) € VE[7]}

2024-03-08 17:45. Page 24 of 1-109.

Gradually Typed Languages Should Be Vigilant! 25

VHU | x 1) 10, 7n] 2 {(KF,5,0) | 2(0) = ({61, &2),)
A (kY3 0) € VHE T, fst(z2), . .. fst(za)]
A (kY3 8) € VHE[T), snd(z2), . . . snd(ty)]}

VH 7, =) 2ot 2 {(K 2,0 | VG, ¥) T (k)% 2% where 37 : (j, V).
V1o where cod(r]’) <: 79.¥t, where (j, ¥',%',£,) € “VL[[T{]].

(W', 3', app{r0} &) € EH [[10, cod(2), . .. cod(tn)]]}

VH [, 12, tn]] 2 {(k, ¥, %, 0) | (k= 1LY, %, 80) € VHE[Int, 12, ... 7]
(k-1,¥,%,¢) € (V?{L|[Boo|, T2, .- Tl
Vk-1,%3%¢) € VH [+ x%1,..., 7]
Vk-1,93%¢) € VH [+ - 0m0]}

EMe] £ {(k¥.5.) |Vj <k.VE 25.¢. (Se) —] (5,¢) Adrred(e)
= (e =Er*v@k-¥)3Kk¥).3: (k- V) A (k- V.3,) e VE[])}

VEI[Int] £ {(k,¥,3,¢ | pointsto(Z, £) € Z}
VL[Nat] £ {(k, ¥, =, ¢ | pointsto(Z, £) € N}
VL[Bool] £ {(k,¥,%,¢ | pointsto(3, £) € B}

Vo x] 2 {(.20 | 2(6) = (. &),) A (kE50) € VE[n] A (kY2 6) € VI[n]}

Vo -] 2 (LY, 2,0 | V(,¥) 2 (k,¥). VS’ D % where 3’ : (j, ¥).
V¢, where (j, V', %, ¢,) € (VL|[11]]. V1,. where 12 <! 7
(¥, 3 app{to} € £,) € EL[n]}

2024-03-08 17:45. Page 25 of 1-109.

26

VEH] 2 (¥, 5,0) | (k- 1,5,) € VE[Int]
(k—1,%,%,¢) € V[Bool]
Vk-1,%,3%,¢) € "VL[[* X x|
V(k-1,%,3,¢) € VE[x —]}

2024-03-08 17:45. Page 26 of 1-109.

Gradually Typed Languages Should Be Vigilant! 27

5.2 Vigilance Fundamental Property for Natural with Simple Typing

In this subsection, we use I' + e : 7 to mean I' kgjy, € : 7.

5.2.1 Lemmas Used Without Mention

LEMMA 5.1 (STEPPING TO ERROR IMPLIES EXPRESSION RELATION). If (3, €) —>{V (3, Err®) then (k,¥,3,e) € 8N|[T]]

Proor. Ifk < j, then we’re done because the condition in the expression relation is vacuously true.
Otherwise, we can use j as our steps, 3’ as our ending value log, and Err® as our irreducible expression, and we satisfy

the condition in the expression relation. O

LEMMA 5.2 (STEPPING TO ERROR IMPLIES EXPRESSION HISTORY RELATION). If(Z, €) —>{V (2, Err®) then (k, 9,3, e) €

EHN[7]
PRroOF. Similar to the previous proof. O

LEMMA 5.3 (ANTI-REDUCTION - HEAD ExPANSION - ExPRESSION RELATION COMMUTES WriTH STEPS). If (K, ¥/,3/,¢’) €
EN[r] and (3, e) —)fv (', ¢') and 3’ : (k,¥’) then (k + j,¥,3,e) € EN[1]

Proor. Unfolding the expression relation in our hypothesis, there exists (2/, ¢’’), j’ such that (3, ¢") —>{\; (=", e")
and (2, ¢”’) is irreducible.
Either ¢’ = Err®, in which case (3, €) —>{\';j/ (=", Err®), so we're done.
Otherwise, there is a (k — j*, ¥”’) 3 (k, ¥’) such that 3" : (k — j’,¥""), and (k — j*,¥"”,3",¢") € VN[1].

Using this information, we can show (k + j, ¥, %, e) € EN|[] by noting (3, e) —>{\J;jl =", e"). O

LEMMA 5.4 (ANTI-REDUCTION - HEAD ExPANSION - ExPRESSION HisTorRY CoMMUTES WiTH STEPS). If (k, ¥/,3/,¢’) €
EHN[7] and (. e) —>jv (3, ¢') and’ : (k,¥’) then (k + j,¥,%,¢) € EHN[7]

ProoF. Similar to the previous proof. O

LEMMA 5.5 (THE OPERATIONAL SEMANTICS PRESERVES WELL FORMED VALUE LoGs). If+ 3 and (Z,e) —}, (', ¢€)
thent+ ',

Proor. The proof is immediate by inspection of the Operational Semantics. O

LemMA 5.6 (NoT ENOUGH STEPS IMPLIES ANY EXPRESSION RELATION). If (3, €) —>’f\] (%',¢’) and (3, ¢€’) is not
irreducible, thenVj < k. (j, ¥, 3, ¢) € EN[7] and (j, ¥, 3, e) € EHN[7].

Proor. Both conclusions are immediate, since the implications in the relations are vacuously true. O
LemMA 5.7 (THE OPERATIONAL SEMANTICS ONLY GROWS STORES). If (Z,e) —}; (2, ¢) then I’ 2 3.

Proor. This is a corollary of Lemma 5.8. O

5.2.2 Lemmas Used With Mention

LEMMA 5.8 (THE OPERATIONAL SEMANTICS PRODUCES VALUE LoG EXTENSIONS). If (2, e) —>}‘V (2',¢’), then 3¢ C
dom(2’) such that £ ¢ dom(X) and ¥’ = X[t — (v,_)].
2024-03-08 17:45. Page 27 of 1-109.

28

Proor. By inspection of the Operational Semantics, no steps modify the value stored in the value log, meaning
¥ 23
And also by the inspection of the Operational Semantics, there is exactly one rule to allocate new entries in the value

log, meaning 3’ \ ¥ is a suitable choice for [£ > (v,)]. O

LEMMA 5.9 (STEPS ARE PRESERVED IN FUTURE VALUE Logs). If(Z, e) —>{V (2',¢e’)andt ¢ dom(Z’) then (Z[€ +— (v,_)],e) —>f\]
' (v, 0)].¢).

Proor. Since all of the added locations are not in 3/, and therefore also not in 3, no rule that will lookup a label in
the derivation tree for (3, e) —>{V (3, ¢’) will find a different value or type.
The only remaining notable reduction steps are those that allocate a new label and value entry, but since ¢ ¢ dom(X’),

we can allocate the same entry unchanged. O

LEMMA 5.10 (SUBTYPING PRESERVES LOGICAL RELATIONS). V3, k, ¥, 7,7". where 3 : (k,¥) and r < 7’

(1) If(k, ¥, %, e) € EN[] then (k,¥,%,e) € EN[']

@) If(k,¥,%,6) € VN[1] then (k,¥,%,£) € VN[']

3) If (k. ¥, %, e) € EHN|[1, 7] then (k,¥,3,¢) € EHN[7', 7]
) If (k,¥,%,¢) € VHN |1, 7] then (k,¥,3,¢) € VHN[,7]

ProoF. Proceed by mutual induction on k and :

e k =0:Both 1 and 3 are immediate if e # ¢.
If e = £ then 1 and 3 follow immediately from 2 and 4.
2 and 4 follow identically in the k = 0 case as they do in the k > 0 case, but the function case is vacuously true.
e k>0:
(1) Unfolding our hypothesis, there is some (3, ¢’), j such that (, e) —>{V (=, ¢e).
If ¢’ = Err® then we’re done.
Otherwise, there is some (k — j, ¥’) 2 (k, ¥’) such that 3 : (k — j, ¥’) and (k — j, ¥, 3, ¢’) € VN[r].
We now have two obligations:
a) (k—j,v,%,¢)eVvN[].
b) ¥ : (k- j,¥).
For a) by IH 2) (not necessarily smaller by type or index), we have (k — j, ¥’,%’,¢’) € VN['], which is

what we wanted to show.

For b), this is immediate from the premise.
(2) Casesplitont <:7’:
i) 7 <! 7: immediate.
ii) Nat <: Int: immediate because N C Z.
iii) 71 X 72 <t 7] X 1), with 71 < 7] and 72 <F 7
We want to show (k, ¥, 2, ¢) € (VN[[TI]].
Unfolding our hypothesis, we get that X(¢) = ((f1, £2), _).
We want to show (k,¥,3, #;) € (VN|[T{]] and (k,¥,3, &) € (VN|[1'§]].
We can apply IH 2) (smaller by type) to both of these judgements to get (k, ¥, X, £;) € VN [z;1 and
2024-03-08 17:45. Page 28 of 1-109.

Gradually Typed Languages Should Be Vigilant! 29

(k9,2) € VN[7].
This is sufficient to show (k, ¥, %, 2(¢)) € VN['].
iv) 1 » 2 <t 1] — 1), with 7] <t and 72 < 1
We want to show (k, ¥, %, £) € VN[7'].
Let (j,¥’) 2 (k,¥) and 3’ 2 ¥ such that 3’ : (j, ¥’).
Let £, € dom(Z’) such that (j, ¥’,%’,6) € VN[7]].
Let 79 > 7.
We want to show (j, ¥, %, app{ro} £ &) € EN[rn].
From IH 2) (smaller by type) applied to the facts that (j, ¥’,3’, £,) € VN [7;] and that 7] <: 71 gives
us (j+1,9¥,%,4) € (VN[[ﬁ]].
Then, we can apply our hypothesis about %(£) (noting that 7y :> 7} > 2)to get (j, ¥’,>’, app{n0} £ &) €
&N 7], which is what we wanted to prove.
(3) Unfolding our hypothesis, we get that there are some (3, ¢”), j such that (3,) —>;\[(2,¢’) and (2, ¢)
are irreducible.
If e’ = Err®, then we’re done.
Otherwise, there is some (k — j, /) 2 (k, ¥) such that 3’ : (k- j,¥’) and (k- j, ¥, %', ¢’) € VHN [, 7],
which means 3¢ € dom(2’) such that e’ = ¢.
Then by IH 4) (not necessarily smaller by type or index) with 7 <: 7/, we get (k—j, ¥, %', £) € VHN[7',7],
which is what we wanted to show.
(4) We want to show (k, ¥,%,¢) € VHN[,7].
We case split on 7 <: 7/:
i) 7 =7': immediate by premise.
ii) Nat <: Int:
by our premise, we already get that V7, € 7, (k, ¥, %, £) € VN[z].
Therefore, it suffices to show (k, ¥, 3, ¢) € (VN|[|nt]] given (k, ¥, 2,) € VN|[Nat]] which is imme-
diate since N c Z.
iii) 71 X 12 <t 1) X 12 with 7y <t 7] and 72 <t 7
by our premise, we get that () = ((f1, &),) and (k, ¥, %, £,) € VHN [, fst(7)] and (k, ¥, %, &) €
VHN 12, snd(7)].
We can apply IH 4) (smaller by type) to both to get (k, ¥, %, £1) € (V‘HN[T{,fst(?)]] and (k,¥,3, 6) €
VHN[2, snd(7)], which is what we wanted to show.
iv) 1 = 2 <) = 7, with 7] <7y and 2 <7
unfolding what we want to show, let =’ 2 =, (j, ¥’) 2 (k, ¥) such that 3’ : (j, ¥’).
Let £, € dom(3’) such that (j,¥’,%,£,) € (VN[[T{]].
Let 79 <! 7).
We want to show (j, ¥/, %', app{zo} £ £,) € EHN [0, cod(D)].

By IH 2) (smaller by type), we get that (j, ¥’,3’,£,) € VN[r].
We can then apply the fact that (k, ¥, %, £) € VHN [z, 7] to get (j, ¥/, %', app{o} £ &) € EHN [0, cod(7)],

which is what we wanted to show.

2024-03-08 17:45. Page 29 of 1-109.

30

]

LEmMA 5.11 (RV-Monotonicrty). If2 : (k,¥) and0 < j < k and3’ 2 3 and (k- j,¥’) 3 (k,¥) and3’ : (k—j, ¥’)
and (k,9,%,) € VHN[7] then (k - j,¥",3',) € VHN[7]

Proor. We want to show (k — j, ¥/,3’, f)(VWN[[?]].
Let 7 be the head of 7 so that 7 = [r, .. .].

We proceed by induction over k and 7:

o k = 0: The function and dynamic cases are vacuously true, and the rest follow as in the other case.
e k>0
i) 7 = Int: immediate because X(¢) = 3’ (¢).
ii) 7 = Nat: same as previous case.
iii) 7 = Bool: same as previous case.
iv) 7 =11 X 12: then X/ (¢) = ({1, £2), _).
We want to show (k — j, ¥’,3/,#) € (V(I-{L[[rl,j%]] and (k- j,¥,%,6) € (V(]’{L[[Tz,m]].
We have (k, ¥, 3, £;) € VHL [z, fst(1)] and (k, ¥, %, &) € VH [z, snd(7)].
Both follow by IH (smaller by type).
V) T=1 — T3
Let (j/,Psi’”’) d (k- j,¥’) and " 2 ¥’ such that 3" : (j/,¥’).
Let £, € dom(Z"") such that (j/,¥”,3",£,) € VN[r].
Let 79 > 1.
We want to show (j, ¥, %", app{n0} £ £,) € EN[10].
Since (j/,¥’") 3 (k, ¥) and 3”" 2 3, we can apply our premise to finish the case.
vi) 7 = *: note by downward closure, 3’ : (k — j — 1,'¥).
Then we want to show (k — j — 1, %, %", £) € VN[[Int] or (k- j—1,¥,5’,¢) € VN[* x «] or (k—j —
1,9,%,¢) € (VN|[* — =]
We know (k—1,¥,3,¢) € (VN[[Int]] or (k—1,9,%,¢) € (VNII* xx] or (k—1,¥73,¢) € VN[[* — =]
The case follows by the IH (smaller by index).

]

LEMMA 5.12 (EXTENSIONS PRESERVE VALUE LoG TYPING). IfS : (k,¥) and0 < j < kand¥’ 2 S and (k—j,¥’) 2 (k,)
and>’ : (k- j, V') andt & dom(>’) and 2[t +— (v,_)] : (K, ¥[> T]) thenX [t — (v,)] : (k- j, ¥ [t — T]).

Proor. Note that all of the conditions in 3'[¢ — (v,)] : (k — j, ¥’ [¢ — 7]) besides those concerning the history
relation are immediate from the hypotheses.
LetZ” =3'[¢ — (v,)] and let ¥’ = ¥'[¢ — 7].
We want to show Vj’ < k — j, and V¢ € dom(Z"), (j/, 9", 5", ¢) € VHN[¥"(0)].
Note by downward closure, =" : (j/,¥”). If ¢ € dom(X’), then we can apply Lemma 5.11 with the fact that
(', ¥")3(k—j,¥)and 3" 2 3.
If ¢ ¢ dom(3'), then ¢ € ¢.
Then we can apply Lemma 5.11 with the fact that (j/, %) 2 (k, ¥[¢ 7]) andZ” D S[¢ — (v,)] toget (j/, ¥, 3", ¢) €

VHN[¥ (£)], which is what we wanted to show. O
2024-03-08 17:45. Page 30 of 1-109.

Gradually Typed Languages Should Be Vigilant! 31

LEMMA 5.13 (LATER THAN PRESERVED By LowER StEPS). If (j,¥’) 3 (k,¥) and j’ < j then (j —j',¥’) 3 (k—j',¥).

Proor. Unfolding the world extension definition, we need to show j — j' < k — j* and V¢ € dom(¥), ¥/ (¢) = ¥(¢).
For the first condition, since j < kand j* < j, j—j < k- j’.

For the second condition, we can unfold the hypothesis to get the statement we need. O

LEMMA 5.14 (RE-MonoTonIcITY). IfS: (k,¥) and0 < j < kand¥ 23 and (k—j,¥') 2 (k,¥) and>" : (k—j, V')
and (k, ¥, %, e) € SHN[T] then (k - j,¥',5',e) € EHN[7].

Proor. Unfolding the relation in our hypothesis, we get that there is some (2", ¢’), j’ such that (2, e) —>j\; =", ¢).
If ¢/ = Err® then we’re done.
Otherwise, there is some (k — j/,¥"") 2 (k,¥) such that 3" : (k — j/,¥"") and (k — j/,¥", 3", ¢') € VHN[7].

By Lemma 5.8, 3"/ = [t (v,)]

By the fact that 3" : (k — j’, ¥"’) this also means ¥/ = ¥t — 7).
We also know from =’ 2 T that ' = =[¢/ — (v, _)].

And from 3’ : (k — j, ¥’) that ¥/ = ¥[¢/ — 7'].

By alpha renaming, we can assume that m.

Then by Lemma 5.9, we get that (3, e) —>5\,] &' - (0,)], €¢).

Now, unfolding the expression relation in what we want to show, we have two obligations:
a) B0 (o,)] (k=)~ ¥'[¢" = 7))
b) (k—j—j ¥ [> 7L - (0,)].¢) e VHN[7].
For a) we can apply Lemma 5.12. We have a number of obligations:

i) 2: (k — j, ¥): immediate by downward closure.
i) 3" 2 ¥: immediate.
iil) (k—j—j,¥"”) 3 (k- j,¥): by Lemma 5.13.
iv) " : (k- j—j’,¥"”)i: immediate by downward closure.
v) ¢’ ¢ dom(3""): assumed above by alpha renaming.

vi) Z[¢ > (v,)] : (k—j, ¥[¢’ — 7’]): this is exactly 3 : (k — j, ¥’).
For b), we can apply Lemma 5.11 with the fact proven in a). O

LEmMaA 5.15 (E-V-MonoTonICITY). IfY : (k,¥) and0 < j < kand¥ 2 S and (k—j,¥') 3 (k,¥) and> : (k—j, ¥’)
then
(1) If (k, ¥, %, e) € EN[r] then (k- j, ¥, %" e) € EN[1]
@) If (k,¥,%,¢) € VN[r] then (k - j, ¥, 5,) € VN[z]

Proor. Proceed by simultaneous induction on k and :

e k = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.
e k>0:
2024-03-08 17:45. Page 31 of 1-109.

1) Unfolding the expression relation in our hypothesis, we get that there is some (2", ¢’), j* such that
(S.e) —L (7,¢).
If ¢’ = Err® then we're done.
Otherwise, there is some (k—j’, ¥”") 2 (k, ¥) such that " : (k—j’, ¥"") and (k—j’, ¥, 3", ¢’) € VN[7].

By Lemma 5.8, 3" = %[€ — (0, _)].

By the fact that 37 : (k — j’, ¥””) this also means ¥/ = Y[t > 7.

We also know from =’ 2 S that 3’ = =[¢’ > (v/,)], and from 3’ : (k — j, ¥’) that ¥/ = ¥[¢' — 7/].
By alpha renaming, we can assume that MTm(Z”).

Then by Lemma 5.9, we get that (3, e) —>;\; E'e — (0,)], ¢).

Now, unfolding the expression relation in what we want to show, we have two obligations:
a) X[(0)] (k= j =] ¥ [t = 7).
b) (k—j—j, ¥ [t — 7).t — (),)] €) e VN[r].
For a) we can apply Lemma 5.12. We have a number of obligations:
i) 2 : (k- j,¥): immediate by downward closure.
ii) 3" 2 3: immediate.
iii) (k—j—j,¥¢”) 3 (k- j,¥): by Lemma 5.13.
iv) 3" : (k- j—j’,¥¢"”)i: immediate by downward closure.
V) m: assumed above by alpha renaming.
)

vi) [> (',)] : (k- j,¥[¢’ — 7']): this is exactly 3’ : (k — j, ¥’).

For b), we can apply the IH 2) (not necessarily smaller by type or index) with the fact proven in a).
2) We want to show that (k — j, ¥, 3", ¢) € VN[z].
We case split on 7:

i) 7= Nat: then X(¢) = (n,_) where n € N, so the case is immediate.
ii) 7 = tint: same as above.
iii) 7 = Bool: same as above.

iv) 7 =11 X 12: then X(£) = ({£1, £2),).
Unfolding our hypothesis gives us (k, ¥, %, ;) € VN[r1] and (k, ¥, %, &) € VN[z2].
Applying IH 2) (smaller by type) to both gives us (k — j, ¥/,3’, &) € VN[z] and (k- j, ¥, 3, &) €
VN| 2], which is sufficient to complete the case.
V) 7=11 > 12:Let3” 2% and (j/,¥”) 2 (k — j, V') such that 3" : (j/,¥").
Let £, € dom(="") such that (j/,¥", 5", £,) € VN[r].
Let 79 > 1.
We want to show (j/, ¥”, %", app{ro} £ &) € EN[r].
Since 2 and J are both transitive, we have X’/ 2 ¥, and (j/, ¥"') 3 (k, ¥).

Therefore we can apply the hypothesis to complete the case.

2024-03-08 17:45. Page 32 of 1-109.

Gradually Typed Languages Should Be Vigilant! 33

vi) 7= *: we want to show (k — 1, ¥/, 3’,¢) € VN[Int] or VN[Bool] or VN[[* x *] or VN[[* — «].
This follows from IH 2) (smaller by index).

O
LEMMA 5.16 (CHECK 1S A NoO OP IN NATURAL). (1) (k+1,%,3,assert g e) € EN[7] iff (k, ¥, 5, e) € EN[z].
2) (k+1,¥,3, assert g e) € SHV[7] iff (k, ¥, %, e) € EHV[7].
ProoOF. By the operational semantics, (2, assert 7p) — N (2, €), so the statement is immediate. O

LEMMA 5.17 (APP ANNOTATIONS DON’T MATTER IN NATURAL). (1) (k+1,%,%, app{no} e1 e2) € EN[] iff (k, ¥, %, e1 e2) €
EN[«].
(2) (k+1,%,3,app{r} e1 e3) € EH" [7] iff (k, ¥, %, e1 €2) € EH[[7].

ProoF. By the operational semantics, (2, app{7o} €1 €e2) — N (=, assert 7p e1 e3).

We can apply Lemma 5.16 to complete the proof. O

LEMMA 5.18 (PAIRS OF SEMANTICALLY WELL TYPED TERMS ARE SEMANTICALLY WELL TypED). If (k, ¥, 3, e1) € EN[r1]
and (k, ¥, 3, e3) € EN[[2] then (k, ¥, %, (e1, e2)) € EN[11 x 12].

Proor. Unfolding the expression relation in our hypothesis about e, we get that there are (X, e), j such that
(2, e1) _)j\l (2, e7) and (3, e7) is irreducible.
If e; = Err®, then were done because the entire application steps to an error.
Otherwise, there is a (k — j,¥’) 2 (k,¥) such that " : (k — j,¥) and (k — j, ¥’,%’,¢]) € VYN[n].
This means e] = ¢ for some £; € dom(X').

With this and by the OS, we get (Z, (e, e2)) —>§v (2, (locy, e2)).

We can apply Lemma 5.15 to our hypothesis about e, to get (k — j, ¥/,3, e3) € SN[[IZ]].

Unfolding the expression relation, we get that there are (X', ej), j* such that (', e2) —>{\; (%', e5) and (2", ¢)) is
irreducible.

If e; = Err®, then were done because the entire application steps to an error.

Otherwise, thereis a (k —j— j','¥"’) 2 (k- j,¥) such that " : (k—j—j",¥"") and (k—j—j’,¥", %", e}) € VYN[2],

which means e;, = £, for some £ € dom(Z").

Putting everything together we get (I, (e1, e2)) —>{\/] (2", {ty,), with " : (k- j — j/, ¥").
Note by OS, (", {1, 2)) — N [/ — ({t1,£2),)]) where £’ ¢ dom(Z"").

We firstly need 3 [¢/ +— ({b1,62),)] : (k—j—j = LY"[t' > ¥ ({) X ¥ (£)]).

Note the only interesting part of this statement is that VK’ < k — j— j/ — 1. (K, ¥ [t’ — ¥ (&) X ¥ ()], 2" [t’ —
(01, £2),)], ") € VHN[®” (£) x ¥ (£)].

This is immediate from the fact that %" : (k’, ¥””) from downward closure, and therefore that (k’,¥”,%",¢;) €
VHN[” (6)] and (K, 9", 5", t5) € VHN[" (£)].

2024-03-08 17:45. Page 33 of 1-109.

34

We know that (k — j,¥',%’,) € (VN[[Tl]] and (k- j - j, 9,2, 8) € VN[[TZH, and Lemma 5.15 with down-
ward closure and the store typing judgement above.

From these facts we get that (k — j — j/ = L,¥"[¢/ = " (f) x ¥’ (&)], 2" [¢' — ({f1,),)], &) € VN[r1] and
(k=j—J =197 [t =¥ (0) x ¥ (6).2 [0 - (. 8)],6) € VN[r].

This is sufficient to show (k — j — j’ — 1, ¥ [¢/ — X" () x ¥ ()], 2" [¢' — ({1,),)], (&1, 6)) € VN1 x 2],

which is what we wanted to prove. O

LEMMA 5.19 (PAIRs OF HISTORY RELATED TERMS ARE HIsTory Reratep). If (k,¥,3,e;) € EHN[fst(D)] and
(k, ¥, %, e3) € EHN[snd(7)] then (k, ¥, %, (e1, e2)) € EHN[7].

Proor. Unfolding the erroring expression relation in our hypothesis about e;, we get that there are (3, e/), j such
that (2, e1) —>;\] (2, e7) and (3, }) is irreducible.
If e = Err®, then were done because the entire application steps to an error.
Otherwise, there is a (k — j,¥’) 3 (k,'¥) such that 3’ : (k — j,¥) and (k — j, ¥’,%’,¢]) € VHN[fst(T)].

This means e] = ¢ for some £; € dom(X').
With this and by the OS, we get (Z, (ej, e2)) _’{V (2, (locy, e2)).

We can apply Lemma 5.14 to our hypothesis about e; to get (k — j, ¥/, 3, ez) € EHN [snd(7)].

Unfolding the erroring expression relation, we get that there are (', e}), j such that (X, e2) —>§\; (X', e5) and (2", €})
is irreducible.

If ¢j = Err®, then were done because the entire application steps to an error.

Otherwise, there is a (k — j — j,¥"") 2 (k — j,¥’) such that %" : (k- j - j,¥"”) and (k - j - j,¥",%",¢}) €
VHN[snd(7)], which means ey = £ for some £ € dom(X").

Putting everything together we get (2, (e1, e2)) —>{\/] (Z",{t1,), with 3" : (k—j - j',¥").
Note by OS, (2", {1, &2)) —n [/ — ({t1,£2),)]) where £’ ¢ dom(Z"").

We firstly need 3/ [£/ — ({(¢1,£2),)] : (k—j—j = LY"[t/' = ¥ (1) X ¥ (£)]).

Note the only interesting part of this statement is that Vk’ < k — j — j' = 1. (K/,¥""[¢/ — 9" (1) X ¥ ()], 2" [t/ —
(1. 2),).€) € VHN [(01) x ¥ (£2)].

This is immediate from the fact that ¥ : (k’,¥””) from downward closure, and therefore that (k’,¥”,%",¢;) €
VHN[¥" (£)] and (K, ¥, 3", &) € VHN[Y" (£)].

We know that (k — j,¥',%,¢]) € VHN[fst(7)] and (k — j — j/,9”,5",8) € VHN[snd(7)], and Lemma 5.11
with downward closure and the store typing judgement above.

From these facts we get that (k — j — j/ — 1, ¥”[¢' — ¥"(£) x " (£)], 3" [¢' — ({1, &),)], 0) € VHN[fst(D)]
and (k—j— j/ = LY’ [/ — ¥ () XV (&), S [= {1, 8)], &) € VHN[snd(7)].

This is sufficient to show (k—j— j/ = 1, W/ [> ¥” (£) x ¥" (£)], 2" [’ > ({£1, &),)], {1, &2)) € VHN[7], which

is what we wanted to prove. O

LEMMA 5.20 (APPLICATIONS OF SEMANTICALLY WELL TYPED TERMS ARE SEMANTICALLY WELL TyYPED). If (K, ¥, 2, ef) €
EN[z — '] and (k,¥,3,e) € EN[1] thenVry = ', (k, ¥, %, app{zo} ere) € EN[w].
2024-03-08 17:45. Page 34 of 1-109.

Gradually Typed Languages Should Be Vigilant! 35

Proor. Unfolding the expression relation in our hypothesis about ef, we get that there are (3, ej’,), Jj such that

(Z,er) _’{V (>, e}) and (%, e}) is irreducible.

If e} = Err®, then we’re done because the entire application steps to an error.

Otherwise, there is a (k — j, ¥’) 2 (k, ¥) such that 3’ : (k — j,¥’) and (k — j, ¥’,3’, e}) e VN[r - 7'].
This means ¢, = ¢ for some £y € dom(2').

f

Using this, we know from the OS that (2, app{z} ef) —>{V (2, app{ro} tre).

We can apply Lemma 5.15 with X’ : (k — j, ¥) to our hypothesis about e to get (k — j, ¥’,%’,¢) € EN[r].

Unfolding the expression relation, we get that there are (2, ¢’), j’ such that (3’,) —>f\; (", e") where (2, ¢’) is
irreducible.

If ¢’ = Err® than we’re done, because the whole application errors.

Otherwise, there exists (k—j—j/,¥"") 2 (k—j, ¥") such that " : (k—j—j’,¥") and (k—j—j*. ¥, 3", ¢") € VN[7].

This means e’ = ¢ for some ¢ € dom(3"").

Putting what we have together, by the OS, (£, app{zo} e/ e) —>{\;'j, (2", (app{wo} tp 0)).

We have (k — j, ¥, 3, ff) € YN[r =] and (k—j—j, %) 2 (k—j,¥)and = 23" and 2 : (k- j — j/, ¥"")
and 79 > 7’.

We can combine these to get (k — j — j, ¥, =", app{zo} £f ¢) € EN[w].

This is sufficient to complete the proof. O

CoRoOLLARY 5.21. If (k, ¥, %,¢) € EN[*] and 2(£) = w and (k, ¥, %, e) € EN[*] then (k — 1,¥,3, app{} we) €
SN[[*]].

LEMMA 5.22 (APPLICATIONS OF HISTORY RELATED TERMS ARE HISTORY RELATED). If (k, ¥, 2, ef) € 8‘HN|[1', 7] and
(k,¥,3,e) € EN[dom(z)] thenVrg > cod(tau), (k, ¥, %, app{r} efe) € EHN o, cod(7)].

Proor. Unfolding the erroring expression relation in our hypothesis about ey, we get that there are (3, e}), Jj such
that (2, er) _’{V =, e}) and (3, e’f) is irreducible.
If e} = Err®, then we’re done because the entire application steps to an error.
Otherwise, there isa (k — j, ¥’) 3 (k,¥) such that " : (k — j,¥’) and (k — j, ¥/,%’, e}) e VHN[r,7].
This means f—’;c = {7 for some ¢y € dom(Z’).

Using this, we know from the OS that (2, app{zo} ef) —>{V (2, app{ro} tre).

We can apply Lemma 5.15 with X’ : (k — j,) to our hypothesis about e to get (k — j, ¥/, %", ¢) € EN[dom(7)].
Unfolding the expression relation, we get that there are (2, ¢’), j’ such that (3’, e) —);\ll (2", e") where (2,¢’) is
irreducible.

If ¢’ = Err® than we’re done, because the whole application errors.

Otherwise, there exists (k—j—j/,¥"") 2 (k—j, ¥") such that " : (k—j—j’,¥") and (k—j—j". ¥, 3", ¢") € VN[7].

This means e’ = ¢ for some ¢ € dom(Z"").

2024-03-08 17:45. Page 35 of 1-109.

36

Putting what we have together, by the OS, (£, app{ro} e/ €) —>{\;’j, (2", (app{wo} 1))

We have (k — j, ¥, %, £f) € VYN[r =] and (k—j—j, %) 2 (k—j,¥)and =" 23" and 2 : (k- j— j/, ¥"")
and 79 > 7.

We can combine these to get (k — j — j', ¥", 2", app{zo} £ ¢) € EHN [10, cod(T)].

This is sufficient to complete the proof. O

CoroLLARY 5.23. If (k, ¥, 2, ef) € EHN[+7] and (k — 1,¥,3,¢) € EN[] then (k - 1,7, S, app{rotere) €
EHN [+, cod(T)].

LEMMA 5.24 (EXPRESSION RELATION IMPLIES EXPRESSION HISTORY RELATION). (1) If (k,¥,3,e) € EN[z] then
(k,¥,%,e) € EHN[7].
@) If (k, ¥, %, 6) € VN[] then (k,¥,%,¢) € VHN|[r].

Proor. Proceed by induction on k and z:

e k =0:1)is immediate from 2).

— 7 = Int: immediate.
- 7=11 X 12: then X(¢) = ({£1, 2),_).
The case follows from the IH on #; and £5.
- 7=11 — 72: vacuously true.
- 7 = vacuously true.

e k > 0:1) is immediate from 2).

— 7 = Int: immediate.
- =11 X 1p: then X(¢) = ({£1, &),).
The case follows from the IH on #; and #5.
- 7 =11 — 12: Follows from 1) from the IH (smaller by index).

— 7 = *: Follows from 2) from the IH (smaller by index), using * X %, * — x*, or Int.

LEMMA 5.25 (MONITOR COMPATIBILITY). IfX : (k, V), then

(1) If(k, ¥, %,6) € VN[z] and3(¢') = (¢, some(7’, 7)), then (k, ¥, %, ') € VN[']

@) If(k,¥,%,e) € EN[] then (k,¥,%, mon { < r}e) € EN['].

3) If (k,¥,%,0) € VHN[¥(0)] and ¥(¢) = [15,...) and t > 75 and 3’ = S[¢' — (¢,some(7’,7))] and ¥/ =
[/ T, 0, % (0)|¥ and £’ ¢ dom(Z) and+ 3/ then (k, V', 3/, t') € VHN[7', 7, %¥(¢)]

) If (k, ¥, %, e) € EHN[7] andT = [r,...] then (k, ¥, %, mon {r’ = t}e) € EHN[, 7, 7]

PRroOF. Proceed by simultaneous induction on k and 7.

e k =0:2) and 4) follow from 1) and 3) respectively.
The proofs follow similarly to the other case, but any function or dynamic cases are vacuously true.

e k>0:
2024-03-08 17:45. Page 36 of 1-109.

Gradually Typed Languages Should Be Vigilant! 37

1) Unfolding the relation in the statement we want to prove, note from our hypothesis about 3, we get that
F 2.
Proceed by case analysis on 7’
a) 7’ = Nat: Since + 2, we have pointsto(Z, £’) o« Nat.

Therefore, we have pointsto(Z, £’) € N, which is sufficient to complete the case.

b) 7’ = Int: same reasoning as Nat.

¢) 7’ = Bool: same reasoning as Nat.

d) 7’ = 7] x 7}: By the fact that + 3}, this case is a contradiction.

e) v’ = 7] — 7;: Unfolding the value relation, let ¥’ 2 ¥, and (j, ¥’) 2 (k, ¥), such that 3" : (j, ¥').

Let £, such that (j,¥’,%,£,) € (VN|[dom(T')]].

Let 79 <: cod(7”).

We want to show (j, ¥/, %, app{zo} £’ &) € EN[x0].

Note by the operational semantics, (X’, app{zo} ¢’ &) —>IZV

(37, assert rp (mon {cod(r") < cod(7)} (£ (mon {dom(r) & dom(7’)} ty)))).

Note by downward closure we have 3" : (j — 2, ¥’).

Therefore it suffices to show (j—2, ¥’,3’, assert 7y (mon {cod(7") < cod(r)} (£ (mon {dom(r) & dom(7’)} £,)))) €
EN[].

Note that 79 > cod(7’).
By Lemma 5.10, it suffices to show (j—2, ¥/, 3’, assert 7y (mon {cod(7’") < cod(7)} (£ (mon {dom(r) & dom(7’)} £,)))) €
EN[cod(")].

By Lemma 5.16, it suffices to show (j—3, ¥/, 3/, mon {cod(7’) < cod(z’)} (¢ (mon {dom(r) & dom(7")} £,))) €
EN[cod(t"].

By IH 2) (smaller by type), it suffices to show (j — 3,¥’,%’,¢ (mon {dom(r) < dom(z’)} &,)) €
EN[cod(r")].

By Lemma 5.17, it suffices to show (j — 2, ¥/, 3/, app{cod(z’)} £ (mon {dom(r) < dom(7’)} ,)) €
EN[cod(z)].

We now have two cases:

1) 7=
Then by Lemma 5.21 it suffices to show (j—1, ¥, %', £) € VN[+] and (j—1, ¥, %", mon {dom(zr) < dom(r’)} £,) €
EN[dom("].
Both follow by Lemma 5.15, and IH 2) (smaller by index) in the second case.

i) t=11 > 128
Then by Lemma 5.20 it suffices to show (j—2, ¥’,3, ¢) € VN[z] and (j-2, ¥’,%’, mon {dom(r) < dom(z’)} &) €
EN[dom(z))].
Both follow by Lemma 5.15, and IH 2) (smaller by index) in the second case.

2024-03-08 17:45. Page 37 of 1-109.

38

f) 7/ = x: Unfolding the relation in what we want to show, we want to show (k, ¥,%, ¢’) € V N [Int]
or VN[[Bool] or VN[x x +] or YN[+ —]
In each case, we can apply IH 1) (smaller by index) to complete the case.
2) Unfolding the expression relation in our hypothesis, we have that there are (e’, '), j such that (e,) _){V
(¢’,%") with (¢’, %) irreducible.
If ¢/ = Err® then we’re done, because the monitor will step to an error as well.
Otherwise, there is (k — j, ¥’) 2 (k,¥) such that 3’ : (k — j,¥’) and (k — j, ¥/, %', ¢’) € VN[r].
This means 3¢ € dom(X’) such that ¢’ = ¢.

If —pointsto(Z’, £) «c 7/, then (3, mon {’ < t}e) —>§V (&, mon{t’ &1} t) — N (', TypeErr (7, ¢)),
so we’re done.

Otherwise, we have pointsto(2’, £) « 7/, and since pointsto(2’,) « 7, we also have 7 « 7’.

We have 5 cases:

(a) 7’ = Nat:
Then (2/, mon {Nat & 7} ¢) —xn (X'[¢/ — (¢,some(Nat, 7))],).
It suffices to show (k — j — 1, ¥/ [¢/ + Nat, 7, ¥(¢)],2'[¢’ — (£,some(Nat, 7))],£) € VN[Nat],
and that 3’ [¢/ — (£,some(Nat, 7))] : (k- j— 1, ¥’'[¢/ — Nat, 7, ¥(¢)]).
The first follows from downward closure, and the fact that 3’ (¢£) o« Nat means X’ (¢) = n.
The second follows from IH 3) (smaller by index).

(b) 7’ = Int: Essentially the same as Nat.

—
e
~

7/ = Bool: Essentially the same as Nat.

(d) 7' =17 x5

By the fact that fst(%'(¢)) o 7] X 7;, we have that 2" (£) = ((f1,£2),).

Then by the OS we have that (3, mon {7" < 7} £) — N (2/, (mon {r] & fst(7)} 1, mon {r; & snd(7)} £)).
By downward closure, we get " : (k—j — 1,%).

By Lemma 5.18, it suffices to show (k — j — 1, ¥/, %", mon {r] & fst(7)} &1) € SN[[T{]] and (k—j—

1LY, %", mon {r) < snd(1)} &) € EN[].

If T = 71 X 19, then we have (k — j, ¥, %",) € VN[r1], and (k - j, ¥,3’, &) € VN[r2].
Then we just need to apply IH 2) (smaller by type) and Lemma 5.15.

If 7 = *, then we have (k — j, ¥, %, (f1, &2)) € VN[«].
This means (k — j — 1, ¥/, %, (¢, &)) € VN[* x «].
Therefore (k — j — 1, ¥,3’, &) € VN[+],and (k — j - 1, ¥, 3, &) € VN[+].
Then we just need to apply IH 2) (smaller by index).
() 7' =1] — 13
By the fact that 7 « 7/, and by the OS, we have (2’, mon {t/ < r}) —n (Z'[¢/ — (£, some(’,7))])
for ¢/ ¢ dom(X’).
Let " =3[t/ > (¢, some(7’,7))], and ¥ = ¥/ [¢' > [/, 7, V' (¢)].
We want to show %'/ : (k — j —2,9").
2024-03-08 17:45. Page 38 of 1-109.

Gradually Typed Languages Should Be Vigilant! 39

To start, the condition on entries in the value log is immediate.

Otherwise the only interesting case is the value history relation.

Letk’ <k-j-2.

Then by downward closure, we get 3’ : (k’, ¥”).

By IH 3) (smaller by index), we get (k’, ¥, %", ') € VHN[7,7, ¥(¢)], which is sufficient.
Then we just need to apply IH 1) (smaller by index).

(f) 7/ = *: case spit on the shape of pointsto(3’, £):

i) pointsto(X’, £) = i: the proof follows identically to the Nat case.

ii) pointsto(2’, £) = b: the proof follows identically to the Bool case.

iii) pointsto(X’,£) = Ax : _.e: then by the operational semantics, (X', mon {x & 7} f) —N

iv

~

(Z'[¢' — (¢, some(x,1))],).

Therefore we want to show:

- X[t (¢L,some(x,1))] : (k—j—2,¥[t' > [* 7,9 (£)]])

- (k=j=2,¥[f = [+ 1,9 ()]],2 [’ — (£, some(x,1))],¢) € VN[+]

The first condition follows from applications of IH 3) (smaller by index).

The second condition follows from an application of IH 1) (smaller by index).

pointsto(Z/, £) = (f1, £5):

By the operational semantics, either:

- (¥, mon {x & 1}) — N (', (mon {x & fst(r)} &1, mon {* < snd(1)} £)) or

- (¥, mon{x & 1} ¢£) — N (X', TypeErr(z, ¢))

In the case it errors, we're done.

Otherwise, it suffices to show (k — j — 1, ¥/, 3, (mon {* < fsi(1)} £1, mon {* < snd(1)} £)) €

ENT+].

By Lemma 5.18, it suffices to show:

- (k—-j-1,9.,% mon{x < fst(r)}) € 8N|[*]]

- (k—j-1,%,%, mon {* < snd(1)} &) € EN[*]

We can unfold our hypothesis that (k, ¥, 3, [)(VN[[T]] to get (k, P, 3, (f1,) € (VN[[T]].

We now have two cases depending on whether 7 = * or 71 X 72:

- Ifr=+then (k- 1,¥,%,6) € (VN[[*]] and (k- 1,¥,%,6) € (VN[[*]]
By Lemma 5.15, (k — j — 1, %', %", &) € VN[+] and (k — j — 1, ¥, 3, &) € VN[+].
Then we can apply IH 2) (smaller by index) to get what we need.

- Ifr =1 X 13, then (k, 9,3, ;) € (VN|[T1]] and (k,¥,3,) € (VN|['[2]].
By Lemma 5.15, (k — j — L ¥/,3/,£) € "VN[[‘rl]] and (k- j—-1,¥.,%,6) € (VN[[T2]].
Then we can apply IH 2) (smaller by index) to get what we need.

3) We proceed by case analysis on 7’
(a) 7’ = Nat: Since we already know (k,¥,3,¢) € (VWV|[N]]‘P({’), it suffices to show (k,¥,3,¢") €
VYN['] and (k, ¥, =, ¢) € VN[7].
This is immediate from + ¥, which implies 7’ o< pointsto(3’, ") and 7 « pointsto(Z/, £’).

(b) 7’ = Int: same as the Nat case.

(c) 7’ = Bool: same as the Nat case.

(d) 7’ = 7] x r;: this case is a contradiction by the fact that - Z.

2024-03-08 17:45. Page 39 of 1-109.

(e) 7" = 7{ — 1;: Unfolding the relation in what we want to prove, let (j,¥") 3 (k, ¥) and =’ 2 X such
that 3’ : (j, ¢).
Let g such that cod(7”) <t 1.
Let £, such that (j, ¥",%’,6) € VN[dom(z")].
We want to show (j, ¥, %', app{ro} £’ t,) € EHN[10, cod(tau), cod(¥’ (¢))].
We know by the OS that (3/, app{zo} ¢ &) — N (Z/,assert 7o (£ &) —N
(27, assert rg (mon {cod(7") < cod(7)} (£ (mon {dom(r) & dom(7’)} £)))).
Note by downward closure, 3’ : (j — 2,¥).

By Lemma 5.10, it suffices to show (j—2, ¥/,3’, assert 7y (mon {cod(7") < cod(7)} (£ (mon {dom(7) < dom(7')} £,))))
€ EHN[cod(r’), cod(), cod(¥’ (£))]

By Lemma 5.16, it suffices to show (j—1, ¥/, 3’, mon {cod(7") < cod(z)} (¢ (mon {dom(r) & dom(z’)} £,))) €
EHN[cod(r"), cod(r), cod(¥' (£))].

By IH 4) (smaller by index), it suffices to show (j — 1, ¥’,3’, (¢ (mon {dom(r) & dom(’)} £,))) €
EHN [cod(¥' (£))].

We now have two cases:
i) 7 = % By Lemma 5.23, it suffices to show (j, ¥/, %, ¢) € EHN[¥’(¢)] and (j-1, ¥, %', mon {* < dom(7’)} £,) €
EN[*] (since ¥’ (¢) = [r,...]).

The first follows from the fact that (j, ¥",3’,¢) € VHN[¥’(¢)] by Lemma 5.11.

For the second, by IH 2) (smaller by index), it suffices to show (j —1, %", 3/, £,) € EN[dom(z’)].
This follows by Lemma 5.15 applied to the fact that (j, ¥’,3’, &) € VN[dom(z")].
i) t=11 > 128
By Lemma 5.22, it suffices to show (j—1, ¥/, %', £) € SHN[¥’(¢)] and (j—1, ¥, 3, mon {dom(z) & dom(z')} £,) €
EN[dom(z)] (since ¥’ (¢) = [z,...]).

The first follows from the fact that (j — 1,¥/,3,¢) € ‘VWN[[‘P’({’)]] by Lemma 5.11.

For the second, by IH 2) (smaller by index), it suffices to show (j — 1, ¥, %, &) € EN[dom(z")].
This follows by Lemma 5.15 applied to the fact that (j, ¥,3’, &) € VN[dom(z’)].
(f) 7/ = *: unfolding the relation in what we want to show, the proof follows by IH 3) (smaller by index).
4) Unfolding the expression relation in our hypothesis, we have that there are (¢’,3’), j such that (e,) —>{V
(¢/,>") with (¢’, ') irreducible.
If ¢/ = Err® then we’re done, because the monitor will step to an error as well.
Otherwise, there is (k — j, ') 3 (k, ¥) such that 3’ : (k — j, ¥’) and (k — j, ¥/, %, ¢’) € VHN[7].
This means 3¢ € dom(X’) such that e’ = ¢, and ¥/ (¢) = 7.

2024-03-08 17:45. Page 40 of 1-109.

Gradually Typed Languages Should Be Vigilant! 41

If —pointsto(Z’, £) « 7/, then (=, mon {t/ & 7} e) —>;\] (2, mon{t’ =r}t) —nN (¥, TypeErr(, t)),

,
so we’re done.

Otherwise, we have pointsto(2/,) « 7/, and since pointsto(2’,) « 7, we also have r « 7’.

We want to show (k — j, ¥/, %, mon {t’ < 7} ¢) € EHN[7, 7, ¥ (0)].

We have three cases:

a)

pointsto(3’,£) = i: By OS, (X', mon {t’ & 1} ¢) — N (Z'[¢' — (£, some(r’,7))], £’).

Let 3" =3'[¢/ + (¢,some(7’,7))] and ¥"" = Psi’[¢' + 7/, 7, P(¢)].

Unfolding the relation in what we want to show, it suffices to show Vz, € ¥/ (¢), (k—j—1,¥",3",¢) €
VYN[r,] and 3" : (k — j - 1,¥"").

For the second, we can apply IH 3) (smaller by index).

For the first, by downward closure, by Lemma 5.11, (k — j — 1, %"/, 3", ¢) € (VﬂN[[‘I”(t’)]].
Then we already know (k — j — 1, ¥", %",) € VN[r,]] when z, € ¥’ (¢).

So it suffices to show (k — j — 1,¥", %", ¢) € (VNI[T,]].

If 7 = Int, then we’re done.

Otherwise, 7’ = *, in which case we need to show (k — j — 2, %", %", ¢") € ‘VN[Int], which is also
immediate.

pointsto(3’, £) = b: essentially the same as the previous case.

3 (6) = (0, b):

By OS, (X',mon {7’ & r}t) —n (X', {mon {fst(7") < fst(1)} £1, mon {snd(7’) < snd(7)} £2)).
Note by downward closue, 2 : (k — j — 2,¥’).

By Lemma 5.19, it suffices to show (k—j—2, %, 3/, mon {fst(r') < fst(1)} 1) € EHN[fst(r'), fst(r), fst(¥’ (¢))]
and (k - j — 2,%/,3/, mon {snd(") & snd()} &) € EHN [snd(r"), snd(r), snd(¥’ (¢€))].

Both of these follow by unfolding the relation in the hypothesis about ¢, applying Lemma 5.14, and
applying IH 4) (smaller by index).

pointsto(X/,f) = Ax : _.e:

By OS, (X',mon {t’ &t} t) —pn X'[t’ — (¢, some(r’,1))],£’), where £’ ¢ dom(3’).

Thenlet " = 3/ [¢’ > (¢, some(r’,7))] and let ¥/ = ¥/ [¢/ — o/, 1, (¢)].

By IH 3) (smaller by index) we get (k— j —2,¥",3",¢") € (V‘HN|[T’, 7, ¥/ (¢£)]), so all that’s left is to
showis 2 : (k—j—2,9").

Letk! <k-j-2.

Note by downward closure, 3’ : (k’,¥’), so V¢’ € dom(Z’), by Lemma 5.11, (k’,¥”,3",¢") €
VHN®” (£”)] (note ¥’ (£) = ¥’ (£7)).

So the final condition is (k’, ¥”, %", ¢') € VHN[¥” (¢')], which follows from IH 3) (smaller by

index).

2024-03-08 17:45. Page 41 of 1-109.

42

5.2.3 Compatability Lemmas

[(x:7) eT]
[TFx:7]

LEMMA 5.26 (T-VAR COMPATIBILITY).

Proor. Let (k,¥,2,y) € GV[I'] such that = : (k, ¥).
We want to show (k, ¥, %, y(x)) € EN[7].
Since x : 7 € T, we get that y(x) = ¢.
Since (k, ¥, %, y) € GN[T], we get (k, ¥, %, ¢) € VN[7].

Then we get that (k, ¥, 3, £) € &N [z] immediately since ¢ is already a value and we have as a premise that % : (k, ¥). O

LEmMMA 5.27 (T-NAT COMPATIBILITY). ——————

[T Fn:Nat]
Proor. Let (k,¥,3,y) € GV[T] such that 3 : (k, ¥).

We want to show (k, ¥, %, y(n)) € EN[Nat].

Note y(n) = n.

By the OS, we have (2,n) — x5 (Z[£ +— (n,)],£).

We get (k, ¥, %, ¢) € VN[Nat] immediately because n € N.

Since VN[Nat] does not rely on ¥ or 3, we have that (k, ¥[¢ — [Nat]],2[¢ — (n,_)],£) € VN[Nat].

LEmMA 5.28 (T-INT COMPATIBILITY). ————————
[Tri:lInt]

Proor. Not meaningfully different from T-Int

LEMMA 5.29 (T-TRUE COMPATIBILITY)., ———————————

[Ti F True : Bool]
Proor. Let (k,¥,2,y) € GV[I] such that = : (k, ¥).

We want to show (k, ¥, %, y(True)) € EN[[Bool].

Note y(True) = True.

By the OS, we have (Z, True) —n (Z[¢ +— (True,)], 0).

We get (k, ¥, %, True) € VN|[Bool] immediately.

Since VN[Bool] does not rely on ¥ or %, we have that (k, ¥[¢ — [Bool]],2[¢ — (True,)],£) € VN[Bool].

LEmMA 5.30 (T-FALSE COMPATIBILITY). ———————
[Ty + False : Bool]

Proor. Not meaningfully different from the previous case.

[[1“1, (x1 :Tl) Fep: Tz]]

LEMMA 5.31 (T-LAM COMPATIBILITY).
[Tk A(x1:71). €1 : 11— 72

Proor. Let (k,¥,%,y) € GV[I] such that = : (k, ¥).
We want to show (k, ¥, %, y(Ax; : 71.e1)) € V|1 — 2]

2024-03-08 17:45. Page 42 of 1-109.

Gradually Typed Languages Should Be Vigilant! 43

Note that y(Ax1 : 71.e1) = Ax1 : 71. y(eq1).

Since Ax; : 71.y(e1) is a value, by the OS we have (2, Ax1 : 71.y(e1)) — N (Z[¢ — (Ax1 : 71.y(e1), none)]), where
t & dom(2).

We choose our later ¥/ to be ¥[f > 11 — 13].

We now have two obligations:

(1) (k=1,9[f— 11 = 12],3[¢ = (Ax1 : 1. y(e1), nonel, &) € VN[1] - 2]
(2) Z[¢+— (Axg : 11.y(e1),none)] : (k — 1, ¥[¢ — 11 — 13])

For 1), unfolding the value relation:

Let (j,¥') 3 (k- LY[t—> 11 > 12]) and 3’ 2 Z[¢ > (Ax7 : 71. y(e1), none)] such that 3/ : (j, ¥’).
Let &, € dom(X’) such that (j, ¥, %, £) € VN[x].

Let 79 > 1.

We want to show (j, ¥/, %", app{r} £ &) € EN[n].

By Lemma 5.17, it suffices to show (j — 1, ¥, 3/, ¢ £,) € EN[r].

By the OS, (¥, &) —nN (¥, y(e1)[t/x]).

By the definition of substitution, y(e1)[£y/x] = y[x > &](e1).

Note that (j — 1, ¥, %/, y[x - &](e1)) € GV, x : o1 |:

i) (j-1,¥,%,6) e VN[r] by Lemma 5.15.
i) Yy € dom(y), (j —1,¥",%,y(y)) € VN[T(y)] by the premise about y and Lemma 5.15.

Therefore, we can apply the hypothesis to y[x + £,], ¥/, 5/, and e; at j—1to get (j—1, ¥/, %', y[x - £,](e1)) € EN[r2].
Finally, we can apply Lemma 5.10 to get (j — 1, ¥/, 3/, y[x &](e1)) € SN[[TO]] which is what we wanted to show.

For 2), first note the domains are equal, since dom(X) = dom(¥).
Then note + X[£ +— Ax; : 71.y(e1)] since + 3.
Then let j < k — 1 andlet £/ € dom(Z[¢ — (Ax; : 71.y(e1), none)]).
If ¢/ # ¢, then we get the remaining conditions from ¥ : (k, ¥) and Lemma 5.11.
If ¢/ = ¢, then note the structural obligation on ¥[¢ — [r; — 72]] is immediate.
We want to show (j, ¥[£ — 71 — 2], Z[£ = (Ax1 : 71.y(e1), none)], £) € VHN [— z2].
Let (j,¥') 3 (k- LY¥[t—> 11 > 13]) and 3’ 2 Z[¢ > (Ax1 : 71. y(e1), none)] such that 3/ : (j, ¥’).
Let &, € dom(X’) such that (j, ¥, %, £) € VN[r].
Let 79 > 2.
By inspection of the value relation, we get immediately that 3’ (¢,) « 71, so we want to show (j, ¥/, %/, app{ro} £ &) €
EHY []
By Lemma 5.17, it suffices to show (j — 1, ¥/,%, £ &) € 87’(‘/'[‘[0]].
By the OS, (¥, £ ty) —nN (¥, y(e1)[to/x]).
By the definition of substitution, y(e1)[£y/x] = y[x > &](e1).
Note that (j — 1, ¥, 3/, y[x - &](e1)) € GV, x: o1]:

iy (j-1,¥,%,£) € VN[r] by Lemma 5.15.
i) Yy € dom(y), (j —1,¥,%,y(y)) € VN[T(y)] by the premise about y and Lemma 5.15.

2024-03-08 17:45. Page 43 of 1-109.

44

Therefore, we can apply the hypothesis to y[x > &], ¥/, %', and e; at j—1to get (j—1, ¥/, %, y[x —] (e1)) € EN[z].

Then we can apply Lemma 5.24 to get (j — 1, ¥/, 3/, y[x — £,](e1)) € EH" [].

Finally, we can apply Lemma 5.10 to get (j — 1, ¥", 3/, y[x — &](e1)) € S‘HV[[TO]] which is what we wanted to show.
m}

|[F1 Fep: 1'1]]
[TiFes:z]

[T+ Cer,e2) : i x72]

LEMMA 5.32 (T-PAIR COMPATIBILITY).

Proor. Let (k,¥,%,y) € GV[T] such that = : (k, ¥).
We want to show (k, ¥, %, y({e1, e2))) € EN[[r1 X 1.
Note y({e1, e2)) = (y(e1), y(e2))-
We can apply the first hypothesis to get (k, ¥, %, y(e1)) € EN[r].
We can apply the second hypothesis to get (k, ¥, 3, y(e2)) € EN[z].
Then by Lemma 5.19, (k, ¥, %, (y(e1), y(e2))) € EN[71 12], which is what we wanted to show. O

[[1"1 Feq :T1—>T2]] |[F1 F ez :7,'1]]

LEMMA 5.33 (T-APP COMPATIBILITY).
[T - app{z}er e : 2]
Proor. Let (k,¥,%,y) € GV|[T] such that = : (k, ¥).
We want to show (k, ¥, %, y(app{z2} €1 €2)) € EN[2].
Note y(app{r2} e1 e2) = app{z2} y(e1) y(e2).
By the first hypothesis we have (k, ¥, %, y(e1)) € EN[r — n].
By the second hypothesis we have (k, ¥, 3, y(ez)) € EN[z1].
Then we can apply Lemma 5.20 to get (k, ¥, 2, app{r2} y(e1) y(e2)) € 8N|[f2]] which is what we wanted to show. O

[[F1 Fep: T1><7,'2]]
[Ty v fst{ri}er : 1]
Proor. Let (k,¥,3,y) € GV[I1] such that 3 : (k, ¥).
We want to show (k, ¥, %, y(fst{r1 } 1)) € EN[n1].
Note y(fst{r1} e1) = fst{z1} y(e1).
From the first hypothesis, we have (k, ¥, 2, y(e1)) € 8N[[T1 x 2]

Unfolding the expression relation, there are j,>’, e] such that (X, y(e1)) _)j\l (2, e7) and e] is irreducible.

LEMMA 5.34 (T-FST COMPATIBILITY).

If e; = Err® then we’re done because the projection also steps to an error.
Otherwise, there is a (k — j, ¥’) 2 (k, ¥) such that 3" : (k — j¥’) and (k — j, ¥’,3',¢]) € VN[x 12].
Unfolding the location and value relations, we get that X’ (e]) = (f1, £2).
By the OS, (=, fst{r1 } e1) _)j\l (Z'fst{r1} e]) — N (3, assert 11 1) —n (3, 61).
We can apply Lemma 5.15 to the premise that (k — j, ¥/, 3/, £;) € VN[1] to get (k — j - 2,%",3",8) € VN[r].
Finally, we can apply Lemma 5.11 to get that 3" : (k — j — 2, ¥’), which is sufficient to complete the proof. O
[[1"1 Fep: T1><T2]]
[Ty + snd{r2} €1 : 2]

Proor. Not meaningfully different from the previous lemma. O

LEMMA 5.35 (T-SND COMPATIBILITY).

2024-03-08 17:45. Page 44 of 1-109.

Gradually Typed Languages Should Be Vigilant! 45

[[F1 e :T]]] [[F1 F e :Tz]]

A(binop, 11,12) = 13
LEMMA 5.36 (T-BINOP COMPATIBILITY).

[[F1 + binopej ey : T3]]

Proor. Let (k,¥,2,y) € GV[I] such that = : (k, ¥).
We want to show (k, ¥, %, y(binope; e2)) € EN[[z3].
Note y(binope; ez) = binopy(er) y(ez).
By the first hypothesis applied to y we have (k, ¥, %, y(e)) € EN[[r1].
Unfolding we get there are j, %', ¢] such that (2, y(e1)) _){V (%, €) and e] is irreducible.
If e; = Err® then we’re done, because the whole operation errors.
Otherwise there is a (k — j,¥’) 3 (k,¥) such that 3" : (k — j,¥’) and (k — j, 9,3, ¢]) € VYN[7].

Note by Lemma 5.15 and Lemma 5.11, we have (k — j, ¥,5",y) € GN[I1] and 3’ : (k — j, ¥').

By the second hypothesis applied to y we have (k — j, ¥/, %", y(e2)) € EN[z].

Unfolding we get there are j/, X", e; such that (X', y(e2)) _){V (2, e5) and e} is irreducible.

If ej = Err® then we’re done, because the whole operation errors.

Otherwise, thereisa (k—j—j/,¥"") 2 (k- j,¥) such that =" : (k—j—j’,¥") and (k—j—j’, ¥", %", ¢e}) € VYN[z].

From the definition of A, 73 = Int or Nat the cases proceed identically, so without loss of generality assume 73 = Int.
71 = 72 = Int, and therefore 3"/ (¢]) = i1 and X" (e}) = ip.

If binop = quotient and iz = 0 then (X", binope; e;) —n (=", DivErr), so we're done.

If binop = quotient and iz # 0, then (3", binope] e}) —n (2", i1/i2) — N (Z"[€ = (i1/iz2, none)], ¢).

Since i1 /ip € Z, we're done.

If binop = sum then (X", binope] e}) —n (3", i1 +i2) —> N (Z”[£ = (i1 +iz,none)], £).

Since iy + iy € Z, we're done. m]

[[F1 Fep: BOO|]]
[[F1 Feg: T]]
[[1‘1 Fes: ‘[]]

[[F1 k if e1 then ey else e3 : T]]

LeEmMA 5.37 (T-IF COMPATIBILITY).

Proor. Let (k,¥,%,y) € GV[I] such that = : (k, ¥).
We want to show (k, ¥, 2, y(if e then e; else e3)) € EN[r].
Note y(if e; then e else e3) = if y(e1) then y(ez) else y(es3).
From the first hypothesis applied to y, we know (k, ¥, %, y(e1)) € EN[Bool].
Unfolding, we have that there is 3’, ¢, j such that (Z,) _%\I (%', e7) where e] is irreducible.
If ei = Err® then we’re done, because the entire if statement errors.
Otherwise, there isa (k — j, ¥’) 3 (k,¥) such that " : (k — j,¥’) and (k — j, ¥’/,%’, e{) € (VN[[BOOH].

Unfolding the location and then the value relation, we get that pointsto(X’, e]) = True or pointsto(X’, e]) = False.

2024-03-08 17:45. Page 45 of 1-109.

46

e pointsto(3’, e) = True: Note by OS, (3, if y(e1) then y(ez) else y(e3)) —>{V (X', if e] then y(ez) else y(e3)) —nN

(3, y(e2)).
By Lemma 5.15 and Lemma 5.11, we have (k — j — 1, ¥/,%",y) € GN[[1] and ' : (k- j — 1, ¥).
From the second hypothesis, we get (k —j — 1, ¥/, %, y(e)) € EN|]|, which is sufficient to complete the proof.

e pointsto(X’, e]) = False: same as other case except replace ez with es.

[[F1 Fep: T1]]

[Ty +cast{ry =11} €1 : 2]

LEMMA 5.38 (T-CAST COMPATIBILITY).

Proor. Let (k,¥,3,y) € GV[T] such that 3 : (k, ¥).
We want to show (k, ¥, %, y(cast {r; < 11} e1)) € EN[z].
Note y(cast {r; < 11} e1) = cast{r; <= 11} y(e1).
By the operational semantics, (2, cast {rz & 71} y(e1)) —nN (Z, mon {2 & 11} €1).
By Lemma 5.11 and Lemma 5.15, (k — 1, ¥, %,y) € GV[[] and X : (k — 1, ¥).
By the hypothesis, (k — 1, %, %, y(e1)) € EN[71].
By Lemma 5.25, (k — 1, ¥, %, mon {12 & 71} e1) € EV[[12]), which is sufficient to complete the proof. O

[[Fl Fep: ‘[1]]
1< T

LEMMA 5.39 (T-SUB COMPATIBILITY). ———————
[[F1 Fep: Tz]]

Proor. Let (k,¥,%,y) € GV[I] such that = : (k, ¥).
We want to show (k, ¥, %, y(e1)) € EN[r2].
From our hypothesis, we have (k, ¥, %, y(e1)) € EN[z1].
We can apply Lemma 5.10 to finish the case. O
5.2.4 Fundamental Property / Vigilance

THEOREM 5.40 (VIGILANCE). IfT Fe: 7 then [T re: 7]V

Proor. By induction over the typing derivation, using the compatability lemmas. O

2024-03-08 17:45. Page 46 of 1-109.

Gradually Typed Languages Should Be Vigilant! 47

6 Vigilance for Truer Typing

In this section, V7 refers to (Vt{u ET refers to StTru, VHT refers to VHL ,, and VHT refers to VHE .

6.1 Vigilance Logical Relation for Truer Typing
We start with the vigilance logical relation for simple typing. The relation needs to be extended with a case to handle L:
VL] =0
We also edit the function cases of the relation to produce a value in the meet of the tag of the annotation and the

result type:
VHx — o) 12t = {(, ¥, 2,0 | V(L Y) 3 (5, 9), 3 23 where ' = (j, ¥). Vao.

Ve, where (j,¥',%',£) € VE[+].

('S app{ro} € &) € EHM[[}’ 1 |z0), cod(z2). .. cod(z)]]}
VEH* - o] = {(k, .50 | Y(j,¥) 2 (k,¥). V5’ 2 3 where 3’ : (j, ¥').

V¢ where (j,¥',%,4,) € (VL|[*]] V1p.

(+1L,¥,% app{no} £ &) € EX[r2 11 0]]}

We also need to edit the X : (k, ¥) judgement because we no longer have or need a correspondance between the

from type of a guard and the type underneath the guard:
3 (k¥) 2 dom() = dom(¥) A F3 A Vj<ktedom(Z).((j,¥,%¢) € VHE[¥(0)]
A (2(0) = (¢',some(z, 7)) = ¥(¢) = [L7], [, ¥(£)]A

A (2(£) = (v,none) Ao ¢ L = IK.¥(¢) = [K]))

6.2 Vigilance Fundamental Property for Transient with Truer Transient Typing

In this subsection, weuse ' F e : Ttomean I ki € : 7.

6.2.1 Lemmas Used Without Mention

LEMMA 6.1 (STEPPING TO ERROR IMPLIES EXPRESSION RELATION). If (2, e) —>JT (', Err®) then (k, ¥, %, e) € ET[7]

Proor. Ifk < j, then we’re done because the condition in the expression relation is vacuously true.
Otherwise, we can use j as our steps, 2" as our ending value log, and Err® as our irreducible expression, and we satisfy

the condition in the expression relation. O
LEMMA 6.2 (STEPPING TO ERROR IMPLIES EXPRESSION HISTORY). If (2, €) —>jT (3, Err®) then (k,¥,3,e) € SWT[[?]]
PRroOF. Similar to the previous proof. O

LEMMA 6.3 (ANTI-REDUCTION - HEAD EXPANSION - EXPRESSION RELATION CoMMUTES W1TH STEPS). If (k, ¥/,3’,¢’) €
ET[r] and (. e) —>JT (3',¢’) and 3’ : (k, V) then (k+ j, ¥, %, e) € ET[7]
2024-03-08 17:45. Page 47 of 1-109.

48

Proor. Unfolding the expression relation in our hypothesis, there exists (X, ¢’”), j’ such that (3’, ¢’) —)jT’ =", e
and (2", e"") is irreducible.
Either e’/ = Err®, in which case (2, e) —>§+jl (2", Err®), so we’re done.
Otherwise, there is a (k — j/, ¥"") 2 (k, ¥’) such that 3" : (k — j/,¥""), and (k — j*, ¥, 5", ¢'") € VT[z].

Using this information, we can show (k + j, ¥, %, e) € &[] by noting (X, e) —>;.+j, (=", e"). O

LEMMA 6.4 (ANTI-REDUCTION - HEAD ExPANSION - ExPRESsTON HisTory CommuTES WiTH STEPS). If (K, ¥/,3/,¢’) €
EHT[[7] and (3.e) —7. (3'.¢’) and 3’ : (k,'¥’) then (k + . ¥, %, e) € EH[7]

ProOF. Similar to the previous proof. O

LEMMA 6.5 (THE OPERATIONAL SEMANTICS PRESERVES WELL FORMED VALUE Logs). If+ X and (2, e) —>’} (2, ¢)
thent+ >’.

Proor. The proof is immediate by inspection of the Operational Semantics. O

LEMMA 6.6 (NoT ENOUGH STEPS IMPLIES ANY EXPRESSION RELATION). If (3, €) —>’} (2,¢") and (¥, ¢’) is not
irreducible, thenVj < k. (j, ¥, %, e) € ET[[r] and (j,¥,%,e) € EH[7].

Proor. Both conclusions are immediate, since the implications in the relations are vacuously true. O
LemMA 6.7 (THE OPERATIONAL SEMANTICS ONLY GROWS STORES). If (Z,€) —7 (Z',¢’) then3’ 2 3.

Proor. This is a corollary of Lemma 6.8. O

6.2.2 Lemmas Used With Mention

LEMMA 6.8 (THE OPERATIONAL SEMANTICS PRODUCES VALUE LoG EXTENSsIONS). If (2, e) —7. (3',¢’), then 3t C
dom(3’) such that t ¢ dom(X) and ¥’ =3[t — (v,_)].

Proor. By inspection of the Operational Semantics, no steps modify the value stored in the value log, meaning
23
And also by the inspection of the Operational Semantics, there is exactly one rule to allocate new entries in the value

log, meaning 3’ \ 3 is a suitable choice for [£ — (v,)]. O

LEMMA 6.9 (STEPS ARE PRESERVED IN FUTURE VALUE Logs). If(Z, e) —>JT (%',¢’) andt ¢ dom(3’) then (Z[€ — (v,_)],e) —>jT
('t (v,)] €).

Proor. Since all of the added locations are not in 3/, and therefore also not in 3, no rule that will lookup a label in
the derivation tree for (2, e) —>JT (%', ¢’) will find a different value or type.
The only remaining notable reduction steps are those that allocate a new label and value entry, but since ¢ ¢ dom(X’),

we can allocate the same entry unchanged. O

LEMMA 6.10 (SUBTYPING PRESERVES LOGICAL RELATIONS). V3, k, ¥, 7,7". whereX : (k,¥) and r <: 7.

(1) If (k, ¥, %, e) € ET[7] then (k,¥,%,e) € ET[7']
@) If (k, ¥, %,¢) € VT[] then (k,¥,%,¢) € VT[]
3) If (k, ¥, %, e) € EHT[7,7] then (k, ¥, %, e) € EHT [/, 7]
2024-03-08 17:45. Page 48 of 1-109.

Gradually Typed Languages Should Be Vigilant! 49

@) If (k,¥,%,6) € VHT[7,7] then (k,¥,%,£) € VHT [, 7]

ProoF. Proceed by mutual induction on k and :

e k =0:Both 1 and 3 are immediate if e # £.

If e = ¢ then 1 and 3 follow immediately from 2 and 4.

2 and 4 follow identically in the k = 0 case as they do in the k > 0 case, but the function case is vacuously true.

e k>0:

(1) Unfolding our hypothesis, there is some (3, ¢’), j such that (, e) —>JT (=, ¢e).

If ¢’ = Err® then we're done.
Otherwise, there is some (k — j, ¥’) 2 (k, ¥’) such that 3 : (k — j,¥’) and (k — j, ¥, 3, ¢’) € VT[7].

We now have two obligations:

a)
b)

(k-j, 9,3, ¢)eVT[].
3 (k—j,¥).

For a) by IH 2) (not necessarily smaller by type or index), we have (k — j, ¥,3’,¢’) € VT[¢'], which is

what we wanted to show.

For b), this is immediate from the premise.

(2) Casesplitont <:7”:

i)
i)

iif)

7 < 7: immediate.

Nat <: Int: immediate because T C Z.

T X Ty < 1) X 15, with 7y <0 7] and 7 <1

We want to show (k, ¥, %, ¢) € (VT[[T’]].

Unfolding our hypothesis, we get that X(¢) = ({f1, £2), _).

We want to show (k,¥,3, #;) € (VT|[T{]] and (k,¥,3, 6) € (VT[[ré]].

We can apply IH 2) (smaller by type) to both of these judgements to get (k, ¥, %, ;) € V Tl[Ti]] and
(k2,2 6) € VI[7].

This is sufficient to show (k, ¥, %, 2(£)) € VT['].

* = 1y <k — 1, with 1 <ol

2
We want to show (k, ¥, 3, ¢) € "VT[[T’]].

Let (j,¥’) 2 (k,¥) and 3’ 2 ¥ such that 3’ : (j, ¥’).

Let & € dom(Z’) such that (j, ¥, 3/, £,) € VT[+].

Let K.

We want to show (j, ¥/,%/, app{K}? £,) € 8T|[ré nK]J.

Then, we can apply our hypothesis about £ to get (j, ¥, 3, app{K} £ £,) € ET [M K].

Finally, we can apply IH 1) (smaller by type) to get (j, ¥’, %', app{K} ¢ &) € (ST[[Té M K] which is

what we wanted to show.

(3) Unfolding our hypothesis, we get that there are some (2’, ¢’), j such that (3,) —>jT (%',¢’) and (3, ¢’)

are irreducible.

If e’ = Err®, then we’re done.
Otherwise, there is some (k — j, W) 2 (k, ¥) such that 3 : (k- j, ¥’) and (k- j, ¥/, %', ¢’) € VH [, 7],
2024-03-08 17:45. Page 49 of 1-109.

50

which means 3¢ € dom(2’) such that e’ = ¢.
Then by IH 4) (not necessarily smaller by type or index) with 7 <: 7/, we get (k—j, ¥/,2’,¢) € (VWT[[T,, 7],

which is what we wanted to show.
(4) Unfolding the history relation, we want to show (k, ¥, %, £) € VHT [/, 7].

We case split on 7 <: 7:

i)

i)

iif)

7 = r’: immediate by premise.

Nat <: Int:

by our premise, we already get that Vz, € 7, (k, ¥,2,¢) € (VT[[TO]].

Therefore, it suffices to show (k, ¥, 2, ¢) € (VT[[Int]] given (k, ¥, 3, ¢) € (VT|[Nat]] which is immedi-
ate since T C Z.

T X 12 <F 7y X 1 with 7 <0 7] and 73 < 7

by our premise, we get that 3(£) = ({(¢1,£2),) and (k, ¥, 3, ;) € (VWT[rl,fst(?)]] and (k,¥,3, 6,) €
VHT 15, snd(7)].

We can apply IH 4) (smaller by type) to both to get (k, ¥, 3, £1) € (VWT[[TI,f:St(?)]] and (k,¥,3, 6,) €
(V‘HT[[T' ,snd(7)]}, which is what we wanted to show.

* = 1 <Ex — 1) with 7 <o

unfolding what we want to show, let ' 2 3, (j, ¥’) 3 (k, ¥) such that 3’ : (j, ¥’).

Let & € dom(Z’) such that (j, ¥, 3/, £,) € VT[+].

Let K.

We want to show (j, ¥/,%/, app{K}? £,) € S'HT[[T’ MK, cod(7)].

We can then apply the fact that (k, ¥, %, ¢) € VHT[1,7] to get (j, ¥/, 3/, app{K} £ £,) € EH [z
K, cod(7)].

Then we can apply IH 3) (smaller by type) to get (j, ¥’,3’,app{K} ¢ £,) € EHT [MK, cod(7)],
which is what we wanted to show.

]

LEMMA 6.11 (RV-MonoTonicrty). If2 : (k,¥) and0 < j < k and3’ 2 3 and (k- j,¥’) 3 (k,¥) and>’ : (k—j, V')
and (k,¥,%,) € VHT 7] then (k - j, ¥, 3", ¢) € VH[7]

Proor. We want to show (k — j, ¥/,3’, t’)(V“HT|[?]].
Let 7 be the head of 7 so that 7 = [z, .. .].

We proceed by induction over k and 7:

o k = 0: The function and dynamic cases are vacuously true, and the rest follow as in the other case.
e k>0
i) 7 = Int: immediate because X(¢) = 3’ (¢).

ii

)
iii)
)

7 = Nat: same as previous case.

7 = Bool: same as previous case.

iv) 7 =11 X 12: then 3/ (¢) = ({1, £2), _).

We want to show (k — j, ¥’,3/,#) € "V‘HL[[rl,j%]] and (k- j,¥,%,6) € (V‘HLIITZ,W(T)]].
We have (k, ¥, 3, £;) € VH[r1, fst(1)] and (k, ¥, 5, &) € VH [z, snd(1)].

Both follow by IH (smaller by type).

2024-03-08 17:45. Page 50 of 1-109.

Gradually Typed Languages Should Be Vigilant! 51

V) T=% > 198
Let (j/,Psi”) 3 (k—j,¥’) and 3" 2 3’ such that 3" (j/, ¥/).
Let &, € dom(="") such that (j/,¥",3",£,) € VT[+].
Let K.
We want to show (j/,¥”, 3", app{K} ¢ £,) € ET[r, N K].
Since (j/,¥"") 3 (k,¥) and 2”" 2 X, we can apply our premise to finish the case.
vi) 7 = s: note by downward closure, ¥’ : (k — j — 1,'¥’).
Then we want to show (k — j — 1,¥",3’,£) € VT [[Int] or (k—j— 1, ¥, %", ¢) € VI[+x] or (k—j —
1,¥,3,0) € (VT[[* —]
We know (k — 1,%¥,%,¢) € VI[Int] or (k—1,%,%,¢) € VT[[+ x«] or (k—1,%,3%,¢) € VI[+ — «].
The case follows by the IH (smaller by index).

[m]

LEMMA 6.12 (EXTENSIONS PRESERVE VALUE LoG TYPING). IfS : (k,¥) and0 < j < kand>’ 2 S and (k—j,¥’) 2 (k,¥)
andy’ : (k—j,¥') and t ¢ dom(Z’) and Z[t — (v,_)] : (K, ¥[¢ > T]) then X' [t — (v,)] : (k- j,¥'[¢ — T]).

Proor. Note that all of the conditions in 3’ [£ +— (v,)] : (k — j, ¥’[£ > T]) besides those concerning the history

relation are immediate from the hypotheses.

LetZ” =3[t — (v,)] andlet ¥’ = ¥'[¢ — 7).

We want to show Vj’ < k — j, and V¢ € dom(3""), (j/,¥",%",£) € VHT[¥"(0)].

Note by downward closure, 3" : (j/,¥”). If ¢ € dom(X’), then we can apply Lemma 6.11 with the fact that
(,¥") 3 (k—j,¥)and 3" 2 3.

If £ ¢ dom(3'), thent € ¢.

Then we can apply Lemma 6.11 with the fact that (j/, ¥”") 3 (k, ¥t - 7])and ="’ 2 2[¢ > (v,)] to get (j/, 9,2, ¢t) €
VHT[¥” (¢)], which is what we wanted to show. o

LEMMA 6.13 (LATER THAN PRESERVED BY LowER STEPS). If (j,¥’) 2 (k,¥) and j' < j then (j—j,¥’) 2 (k—j',¥).

Proor. Unfolding the world extension definition, we need to show j — j’ < k — j* and V¢ € dom(¥), ¥/ (¢) = ¥(¢).
For the first condition, since j < kand j* < j, j—j < k- j’.

For the second condition, we can unfold the hypothesis to get the statement we need. O

LEMMA 6.14 (RE-MonoToNiICITY). IfS : (k,¥) and0 < j < kand¥’ 2 X and (k—j,¥’') 2 (k,¥) and >’ : (k—j, ¥’)
and (k, 9,3, e) € EHT 7] then (k - j, ¥, 3, e) € EHT[7].

Proor. Unfolding the relation in our hypothesis, we get that there is some (2", ¢”), j such that (T, €) _)]T/ =7, ¢).

If ¢’ = Err® then we’re done.
Otherwise, there is some (k — j/, ¥"") 3 (k, ¥) such that 3" : (k — j/, ¥"") and (k — j/, %", 3" ') € VH[7].

By Lemma 6.8, 3" = Zm.

By the fact that X"" : (k — j/, ¢”’) this also means ¥’/ = ¥t - 7.
We also know from 3’ 2 3 that &/ = S[¢" — (v/,_)].

And from 3’ : (k — j,¥’) that ¥/ = ¥[¢/ — 7’].

2024-03-08 17:45. Page 51 of 1-109.

52

By alpha renaming, we can assume that £/ ¢ dom(Z'").
Then by Lemma 6.9, we get that (37, e) —>jTI [- (v,)], €).

Now, unfolding the expression relation in what we want to show, we have two obligations:
Q) 3T = @l (k== /¥ [¢ = 7).
b) (k—j—j [t — 73"t . le) e VH[7].
For a) we can apply Lemma 6.12. We have a number of obligations:

i) 2 : (k — j,¥): immediate by downward closure.
ii) " 2 ¥: immediate.
iil) (k—j—j,%") 3 (k- j,¥): by Lemma 6.13.
iv) " : (k- j— j’,¥”)i: immediate by downward closure.
) W: assumed above by alpha renaming.

vi) 2[¢ > (v,)] : (k—j, ¥[¢’ — 7']): this is exactly 3 : (k — j, ¥’).

For b), we can apply Lemma 6.11 with the fact proven in a).

O

LEmMA 6.15 (E-V-MonoTonICITY). IfY : (k,¥) and0 < j < kand¥ 2 S and (k—j,¥’) 3 (k,¥) and> : (k—j, V')

then
(1) If (k, 9,3, e) € ET[z] then (k - j,¥',3’,e) € ET7]
@) If(k,¥,%,¢) € VI[7] then (k- j,¥',3,£) € VT[7]
ProoF. Proceed by simultaneous induction on k and z:

e k = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.
e k>0:

1) Unfolding the expression relation in our hypothesis, we get that there is some (2, ¢’), j* such that

(Se) — (57,¢).

If ¢’ = Err® then we're done.

Otherwise, there is some (k—j’,¥”") 2 (k, ¥) such that %" : (k—j’, ¥"") and (k—j/, %", %", ¢’) € VT[7].

By Lemma 6.8, 3"/ = [t — (v,)].

By the fact that 3" : (k — j/, ¥”’) this also means ¥’/ = ¥t - 7).

We also know from &’ 2 3 that 3’ = £[¢/ > (v/,)], and from 3’ : (k — j, ¥’) that ¥’ =
By alpha renaming, we can assume that MTm(Z”).

Then by Lemma 6.9, we get that (37, ¢) —>JT, e - (W,)], €).

Now, unfolding the expression relation in what we want to show, we have two obligations:

a) B[t (0,)] : (k= j—j, ¥"[¢ = 7).
b) (k—j—j, ¥ [3"t — (v,)] ¢) e VT[]
For a) we can apply Lemma 6.12. We have a number of obligations:

i) 2 : (k- j,¥): immediate by downward closure.

2024-03-08 17:45. Page 52 of 1-109.

Gradually Typed Languages Should Be Vigilant! 53

ii) ¥ D 3: immediate.
i) (k—j—j,¥9") 3 (k-j,¥): by Lemma 6.13.
zl

" (k—=j—Jj',¥”)i: immediate by downward closure.

)
iif)
iv)
V) m: assumed above by alpha renaming.

vi) [> (o,)] : (k= j,¥[¢' — 7’]): this is exactly 3/ : (k — j, ¥').

For b), we can apply the IH 2) (not necessarily smaller by type or index) with the fact proven in a).
2) We want to show that (k — j, ¥’,3’,¢) € VT[z].
We case split on 7:

i) 7= Nat: then X(¢) = (n,_) where n € T, so the case is immediate.
ii) 7 = tint: same as above.
iii) 7 = Bool: same as above.

iv) 7 =11 X 12: then X(£) = ({£1, £2),).
Unfolding our hypothesis gives us (k, ¥, %, ;) € VT[r;] and (k, ¥, 3, &) € VI [z].
Applying IH 2) (smaller by type) to both gives us (k — j, ¥, %", £;) € VT [z] and (k — j, ¥, 3’, &) €
VT r3]), which is sufficient to complete the case.
v) 7=# — 1p: Let ¥ 23" and (j/,¥”") I (k — j, ¥’) such that =" : (j/, ¥").
Let & € dom(Z"") such that (j, %", 3", 8,) € VT[«].
Let K.
We want to show (j/, %", 3", app{K} £ t,) € ET[K N r;].
Since 2 and J are both transitive, we have X’/ 2 ¥, and (j/, ¥"’) 3 (k, ¥).
Therefore we can apply the hypothesis to complete the case.
vi) 7= *: we want to show (k — 1, %",3’,¢) € VT [[Int] or VT[Bool] or VI x] or VT [% — *].
This follows from IH 2) (smaller by index).

O

LEMMA 6.16 (BOT RELATION IF AND ONLY IF ERROR). (k, ¥, %, ¢) € ET[L] and (Z,¢) —>jT (%', ¢’) where (3',¢') is
irreducible and j < k, iff ¢’ = Err®.

PROOF. o =: Unfolding our hypothesis about e in the expression relation, we get that either:
- ¢ =Err®or
- 3(k-j,¥) 2 (k,¥)suchthat 3’ : (k- j,¥") and (k — j, ¥",%",¢’) € VT[1]
Assume for sake of contradiction the second case holds.
(k- j,¥,3", ¢) e VT L] implies (k — j, ¥, 3,3’ (¢’)) € VT[L], which is a contradiction.
Therefore, e’ = Err®.
e &:immediate.

O

LEMMA 6.17 (TAGMATCH MAKES VALUES IN RELATION AT MEET). IfK o pointsto(Z, £) and (k, ¥, 3, ¢) € VT[[TH then
(k-1,%,%,0) c VI[Kn]
2024-03-08 17:45. Page 53 of 1-109.

54

Proor. There are three cases to consider:

(1) Kt = L:a contradiction.

(2) KNt =r1:immediate by Lemma 6.15.
(3) KMz =K and r = *: immediate by unfolding the value relation in our hypothesis, and noting that whichever
type of Int, * X % or * — = we satisfy must be K.

O

LEmMMA 6.18 (CHECK MAKES TErRMS IN RELATION AT MEET). If (k, ¥, 3, e) € 8T|[r]] then (k,¥,3,assertKe) €
ET[rnK].

Proor. Unfolding the expression relation in our hypothesis, we have that 3e’,3’, j such that (T, e) —>§. (2, ¢)
and (3, ¢’) is irreducible.
If ¢/ = Err® then we’re done.
Otherwise 3(k — j, ¥’) 3 (k,¥) such that 3’ : (k — j, ¥’) and (k — j, ¥,3’,¢') € VT[7].
It suffices to show (k — j, ¥’,3’ assertK ¢’) € ET[r N K].
By the OS, if =K « pointsto(2’, ¢’) then (3, assert K e’) — 7 (Z’, Err®) and we’re done.
Otherwise, (2’ assert Ke’) — 1 (¥/,¢’) and K o pointsto(Z/, e’).
By Lemma 6.17, we therefore get (k — j — 1, ¥’,3",¢’) € "VT[[T M K], which is sufficient to complete the proof. O

LEMMA 6.19 (TAGMATCH MAKES VALUES IN HISTORY RELATION AT MEET). IfK o« pointsto(Z, ¢) and (k,¥,2,¢) €
VHT 1, 7] then (k—1,¥,%,¢) e VHT[K 1,7

Proor. There are three cases to consider:

(1) KMr = 1:a contradiction because K o« %(f) and (k, ¥, %, £) € VT[z].

(2) KNt =r:immediate by Lemma 6.11.
(3) KNt =K and 7 = *: immediate by unfolding the erroring value relation in our hypothesis, and noting that
whichever type of Int, * X * or * — * we satisfy must be K.

O

LEMMA 6.20 (CHECK MAKES TERMS IN HISTORY RELATION AT MEET). If(k, ¥, 3, €) € SWT[[T, 7] then (k, ¥, 3, assertK e) €
EHT[rnK,7].

Proor. Unfolding the erroring expression relation in our hypothesis, we have that 3¢’, 3, j such that (2, e) —>}T
(%’,¢’) and (3, ¢’) is irreducible.
If ¢/ = Err® then we’re done.
Otherwise 3(k — j,¥’) I (k,¥) such that 3’ : (k- j, %) and (k — j, ¥, %", ¢’) € VH"[T]z 7.
It suffices to show (k — j, ¥/, %, assert K ') € EHT [t MK, 7].
By the OS, if =K « pointsto(2’, ¢’) then (3, assert K e’) —7 (Z’, Err®) and we’re done.
Otherwise, (2/,assert Ke’) — 1 (¥/,¢’) and K o pointsto(Z/, e’).
By Lemma 6.19, we therefore get (k—j—1,¥",%,¢’) € (V‘HV[[T]]T M K, 7, which is sufficient to complete the proof. O

LEMMA 6.21 (LATTICE ORDERING PRESERVES RELATION). If7 < 7/ then
2024-03-08 17:45. Page 54 of 1-109.

Gradually Typed Languages Should Be Vigilant! 55

(1) If(k, ¥, %, e) € ET[[7] then (k, ¥, 5, ¢) € ET[']
@) If(k, ¥, %,¢) € VI[1] then (k, ¥,%,¢) € VI[].

ProOF.

=,
If e’

(1) Unfolding the expression relation in our hypothesis, we have that 3e’,3’, j such that (2,) —>JT

e¢’) and (3, ¢’) is irreducible.

= Err® then we’re done.

Otherwise 3(k — j, ¥’) 3 (k,¥) such that 3’ : (k — j,¥’) and (k - j, ¥/, %", ¢’) € VT[z].
It suffices to show (k — j, ¥/,%",¢’) € (VTIIT']], which follows by IH 2).

(2) Proceed by induction over the lattice ordering:

@)
(b)

(©

CY

7 <: 7’ follows from Lemma 6.10.

T=1 X1, 7 =17] X1, 71 < 7],and 13 < 75
Then unfolding the location relation in our hypothesis, we have that 2(¢) = ({¢1, £2), _).

We also have that (k, ¥, %, £) € VT[] and (k, ¥, 3, &) € VT [12].

Unfolding the relation in what we want to show, we want to show (k, ¥, 3, #;) € V T|[Tz]] and (k,¥,2,) €
’VT|[1'£]], which follows by IH 2).

T=% > 17,7 =% > 1),and 7, < 7}:

We want to show (k, ¥, 2, ¢) € "VT|[* -]

Let (j, ¥’) 3 (k,¥) and 3’ 2 ¥ such that 3’ : (j, ¥’).

Let &, € dom(Z’) such that (j, ¥, %', £) € VT[«].

Let K.

We want to show (j, ¥’,3’,app{K} £ £,) € ET[[z}, M K].

From our hypothesis, we get that (j, ¥, 3/, app{K} £ £,) € ET[[z, M K].

The proof follows from IH 1).

7/ = x: Proceed by case analysis on 7:

(1) 7 = Nat: Immediate.
(ii) 7 = Int: Immediate.
(iii) 7 = Bool: Immediate.
(iv) 7 = 71 X 12: Then unfolding the location relation in our hypothesis, we have that 3(¢) = ({1, &), _).

We also have that (k, ¥, %, £;) € (VT[[n]] and (k, ¥, 3, 6) € ‘VT|[1'2]].
Unfolding the relation in what we want to show, we want to show (k — 1, ¥, %, £,) € VT[] and
(k- 1,%,%,£) € VT[], which follows by IH 2) and Lemma 6.15.
(v) 7 =% — ’: We want to show (k, ¥, %,¢) € VI[+ — «].
Let (j,¥’) 2 (k,¥) and 3’ 2 ¥ such that 3’ : (j, ¥').
Let & € dom(3’) such that (j, ¥/, %/, £,) € VT[«].
Let K.
We want to show (j, ¥’,%’,app{K} £ £,) € ET[K].
From our hypothesis, we get that (j, ¥, 3/, app{K} £ £,) € ET[' nK].
By the IH 1), we get that (j, ¥’,3’, app{K} ¢ £,) € ET[K] which is what we wanted to show.
]

LEMMA 6.22 (PAIRS OF SEMANTICALLY WELL TYPED TERMS ARE SEMANTICALLY WELL TYPED). If (k, ¥, 3, 1) € ST[[Tl]]
and (k,¥,3, e5) € 8T[[T2]] then (k,¥,3, {e1, e2)) € ST[[Tl x 2]
2024-03-08 17:45. Page 55 of 1-109.

56

Proor. Unfolding the expression relation in our hypothesis about e, we get that there are (X, e), j such that
(2, e1) —>jT (2, €]) and (3, e7) is irreducible.
If e; = Err®, then were done because the entire application steps to an error.
Otherwise, there is a (k — j, ¥’) 2 (k, ¥) such that 3" : (k — j, ¥) and (k - j, ¥, 3/, ¢]) € VT[]

This means e] = ¢ for some £; € dom(X').
With this and by the OS, we get (3, (e1, e2)) —>;. (27, (locy, e2)).

We can apply Lemma 6.15 to our hypothesis about e to get (k — j, ¥/, %', e5) € ET[[12].

Unfolding the expression relation, we get that there are (', ej), j* such that (¥, e2) _’]T (%', ey) and (2", ¢)) is
irreducible.

If e; = Err®, then were done because the entire application steps to an error.

Otherwise, thereis a (k—j—j’,¥”’) 3 (k- j,¥’) such that " : (k—j—j’,¥") and (k—j—j, ¥",%",¢}) € VT[],
which means e;, = £, for some £» € dom(X").

Putting everything together we get (I, (e1, e2)) —)JT/ (2", {ty, &), with " : (k- j — j/, ¥").

Note by OS, (27, {t1,t2)) —>1 (X[t + {t1, &)]) where ¢’ ¢ dom(Z"").

We firstly need 3 [£/ +— ({b1,82),)] : (k—j—j = LY"[t' > ¥ (f) X ¥ (£)]).

Note the only interesting part of this statement is that VK’ < k — j— j/ — 1. (K, ¥ [t — ¥ (&) X ¥ ()], 2" [t’ —
(0, &),)1, 0') € VHT [() x ¥ ()]

This is immediate from the fact that " : (k’, ¥"”) from downward closure, and therefore that (k’,¥",%", ;) €
VHI[Y” ()] and (K, 9",5",) € VHT[¥" (8)].

We know that (k — j,¥',%',) € (VTIIrl]] and (k—j - j, 9.3, &) € (VTl[Tz]], and Lemma 6.15 with down-
ward closure and the store typing judgement above.

From these facts we get that (k — j — j’ — 1L, ¥” [t/ = " (&) x ¥’ (&)],2"[¢' — ({1, £),)], &) € VT[] and
(k=j=J7 =LY [t' = 9" () x ¥ ()], [t' - (t1.)], £) € VT[r2].

This is sufficient to show (k — j — j* — L, ¥ [¢ = ¥ (£)) X ¥’ (&)], 2" [¢' — ((f1,£),)], (1, £)) € VT [11 x 2],

which is what we wanted to prove. O

LEMMA 6.23 (PAIRS OF RELATED TERMS ARE RELATED). If(k, ¥, 3, e1) € EHT[fst(7)] and (k, ¥, 3, e2) € EH [snd(7)]
then (k, ¥, %, (e1, e2)) € EHT[7].

Proor. Unfolding the erroring expression relation in our hypothesis about e;, we get that there are (3, ¢{), j such
that (2, e1) —>JT (Z,e1) and (3, ¢]) is irreducible.
If ¢] = Err®, then were done because the entire application steps to an error.
Otherwise, there isa (k — j, ¥’) 3 (k, ¥) such that 3’ : (k — j,¥) and (k — j, ¥’,%/, e{) € (V‘HT[fst(?)]].

This means e] = ¢ for some £, € dom(>’).

With this and by the OS, we get (3, (e1, e2)) —>JT (27, (locy, e2)).

2024-03-08 17:45. Page 56 of 1-109.

Gradually Typed Languages Should Be Vigilant! 57

We can apply Lemma 6.14 to our hypothesis about e to get (k — j, ¥/,3/, e2) € S‘HT[[snd(?)]].

Unfolding the erroring expression relation, we get that there are (2, €}), j* such that (', e2) —>jT (2',e}) and (27, €})
is irreducible.

If e7 = Err®, then were done because the entire application steps to an error.

Otherwise, there is a (k — j — j’,¥") 2 (k — j,¥’) such that 3" : (k — j - j,¥") and (k — j — j',¥",5",¢}) €
’V“}{Tﬂsnd(?)]], which means e}, = £, for some £» € dom(X").

Putting everything together we get (3, (e, e2)) —>]Tl (2", {ty,), with " = (k- j — j/,¥").
Note by OS, (", {t1,£2)) —1 (" [/ — ({&1, £2), _)]) where ¢’ ¢ dom(Z"").

We firstly need 3/ [£/ +— ({¢1,82),)] : (k—j—j = LY"[t' = ¥ (f) X ¥ (£&)]).

Note the only interesting part of this statement is that VK’ < k — j — j' = 1. (K", ¥""[¢’ — V" (1) X ¥ ()], 2" [/ —
(0, 62),)1, €) € VHT[W (6) x ¥ ()]

This is immediate from the fact that %" : (k’,¥"") from downward closure, and therefore that (k’,¥”,%",¢;) €
VHT[¥” ()] and (K, ¥, 5",) € VHT [V ()]

We know that (k — j,¥',3/,¢/) € VHT[fst(T)] and (k — j — j', 9", 3", 8) € VH[snd(7)], and Lemma 6.11
with downward closure and the store typing judgement above.

From these facts we get that (k — j — j/ = LY [¢' > ¥/ (&) x ¥ (£)].Z" [t/ — (&1,),)], 1) € (V?{T[]‘st(?)]]
and (k—j— j/ = LY [0 > W' () x V" (&), 3 [t/ — (1, 8)],) € VH [snd(D)].

This is sufficient to show (k—j— j' =1, P [¢/ — " (£)) x ¥ (£)], 2" [¢' = ({£1,),)], {t1,) € ’V‘HT[[?]], which

is what we wanted to prove. O

LEMMA 6.24 (APPLICATIONS OF SEMANTICALLY WELL TYPED TERMS ARE SEMANTICALLY WELL TYPED). If(k, ¥, 2, e f) €
ET[x — 7] and (k, ¥, ¢) € ET[[«] then VK, (k,'¥. %, app{K} ef e) € ET[rMK].

Proor. Unfolding the expression relation in our hypothesis about ey, we get that there are =, e}), Jj such that
(Zer) —>§. (O e}) and (2/, e}) is irreducible.
If e} = Err®, then we're done because the entire application steps to an error.
Otherwise, there is a (k — j, ¥’) 2 (k, ¥) such that 3’ : (k — j,¥’) and (k — j, ¥’/,3’, e}) e VT[+ - 7].
This means e} = {7 for some ¢y € dom(Z’).

Using this, we know from the OS that (3, app{K} ef €) —>§. (2, app{K} tre).

We can apply Lemma 6.15 with X’ : (k — j, ¥) to our hypothesis about e to get (k — j, ¥, %", e) € ET[«].

Unfolding the expression relation, we get that there are (£, ¢’), j such that (3, ¢) —>JT, (2", ¢’) where (2", ¢’) is
irreducible.

If ¢’ = Err® than we’re done, because the whole application errors.

Otherwise, there exists (k—j— j/,¥”") 3 (k—j, ¥’) such that 3" : (k—j—j’,¥"") and (k—j— j*. 9", %", ¢") € VT[+].

This means e’ = £ for some ¢ € dom(2").

Putting what we have together, by the OS, (2, app{K} ef €) —>J;'j/ (2", (app{K} tr 1))
2024-03-08 17:45. Page 57 of 1-109.

58

We have (k — j,¥',3,) € YT+ > 7] and (k- j—j,¥") 2 (k—j,¥)and ¥’ 2% and 3" : (k- j— j/, ¥").
We can combine these to get (k — j — j, ¥”, =", app{K} £ ¢) € ET[rmK].
This is sufficient to complete the proof. O

COROLLARY 6.25. If (k, ¥,3,¢) € ET[[+] and 2(¢) = w and (k,¥,%,¢) € ET[*] then (k — 1,%,%, app{+} we) €
ET[+].

LEMMA 6.26 (APPLICATIONS OF RELATED TERMS ARE RELATED). If (k,¥,2, ef) € 87’(T[[T, 7] and (k, ¥, 3, e) € ET[[+]
then VK, (k,'¥,%, app{K} ef €) € EH [cod(r) MK, cod(7)].

Proor. Unfolding the erroring expression relation in our hypothesis about ef, we get that there are (%', e}), Jj such
that (2, er) —>}T =, e}) and (3, e}) is irreducible.
If e} = Err®, then we’re done because the entire application steps to an error.
Otherwise, there isa (k — j, ¥’) 3 (k,¥) such that " : (k — j,¥’) and (k — j, ¥/,%’, e}) e VH[r,7].
This means e’f = {y for some ¢y € dom(’).

Using this, we know from the OS that (%, app{K} ef) —>JT (2, app{K} tre).

We can apply Lemma 6.15 with 3/ : (k — j, ¥’) to our hypothesis about e to get (k — j, ¥’,3’,¢) € ET[+].

Unfolding the expression relation, we get that there are (£, ¢’), j such that (3, ¢) —>JT, (2”,¢") where (£”,¢’) is
irreducible.

If ¢’ = Err® than we’re done, because the whole application errors.

Otherwise, there exists (k—j— j/,¥”") 3 (k—j, ¥') such that 3" : (k—j—j/,¥"") and (k—j— j*. 9", 3", ¢’) € VT[+].

This means e’ = ¢ for some ¢ € dom(%"").

Putting what we have together, by the OS, (2, app{K} e e) —>];j/ (=", (app{K}).

We have (k - j, ¥, %, {r) € VT[+ - r]and (k—j—j, ") 2 (k- j,¥)and 3" 2 ¥ and 3" : (k- j — j/, ¥").
We can combine these to get (k — j — j', ¥”, X", app{K} ¢ ¢) € EH [cod(r) NK, cod(7)].

This is sufficient to complete the proof. O

CoROLLARY 6.27. If (k, ¥, 3, ef) € SWT[[*,?]] and (k — 1,9,%,e) € ST[[*]] then (k — 1, ‘I’,Z,app{ro}ef e) €
EHT[, cod(7)].

LEMMA 6.28 (DyNaMIC CHECKS ARE NOOPS). (1) If (k+1,%,%, assert * e) € ET[[7] then (k,¥,%,e) € ET[[7].
2) If (k+1,%,%, assert = e) € SH[7] then (k,¥,3,e) € EH[7].

PROOF. (1) assume there is ¥, ¢/, j such that (3, e) —>]T (2’,¢") where (2, ¢’) is irreducible.
By the OS, we get that (2, assert * e) —>§. (27, assert * e’).
Then by OS, we have (3, assert * ¢’) —>§. (=, ¢e).
Therefore, we can apply our hypothesis to complete the proof.

(2) Same as previous case, just using the history relation.

LEMMA 6.29 (MONITOR COMPATIBILITY). If : (k,¥), then
2024-03-08 17:45. Page 58 of 1-109.

Gradually Typed Languages Should Be Vigilant! 59

(1) If(k, ¥, %,¢) € VT[] and 2(¢") = (¢, some(K’, K)), then (k, ¥,%,£') € VT[K' nK n]

@) If(k,¥,%,e) € ET[t K NK’'] then (k, ¥, %, mon {K’ = K}e) € ET[tnKNK'].

3) If (k,¥,%,0) € VHTI[¥(0)] and 3’ = S[¢ — (t,some(K’,K))] and ¥’ = [¢/ — K',K,¥(¢)|¥ and ' ¢
dom(%) and v 3’ then (k,¥,3",¢') € VHT[K', K, ¥(¢)]

4) If (k, ¥, %, e) € EHT[T] then (k,¥,%, mon {x < «}e) € EH [+, 7]

Proor. Proceed by simultaneous induction on k and 7.

e k =0:2) and 4) follow from 1) and 3) respectively.
The proofs follow similarly to the other case, but any function or dynamic cases are vacuously true.
e k>0
1) Unfolding the relation in the statement we want to prove, note from our hypothesis about X, we get that
F 2
Proceed by case analysis on 7 MK M K”:
i) 7 =7t MNKnK’: Immediate.

if) zMK MK = L:then either K or K’ is 1, which is a contradiction since they both tagmatch
pointsto(Z, £).

iii) tMK MK’ < r: then r = Int and K or K’ = Nat.
Immediate because by + %, Nat « pointsto(Z, ¢).
iv) MK MK’ # r: then it must be the case that 7 = * and K or K/ = % — .
Note K or K’ cannot be # X *, by F 3.
Unfolding the relation in our hypothesis, we have that (k — 1, ¥, 3,) € VT [+ — «].
We want to show that (k,¥,3,¢') € (VT[[* — x].
Unfolding the relation, let (j, ¥”) 3 (k, ¥) and 3’ 2 3 such that 3" : (j, ¥’).
Let & € dom(Z’) such that (j, ¥/, %/, £) € VT[+].
Let K.
We want to show (j, ¥’,%’,app{K} £’ £,) € ET[K].
By the OS, (37, app{K} ¢’ t) —>2T (2, assert K (mon {* & =} (£ (mon {x < *} £)))).
By IH 2), we have (j, ¥/, %/, mon {x < #} £,) € ET[+].
By Lemma 6.24, we have that (j, ¥/,3’, app{K} £ (mon {* & =} £,)) € ET[K].
Then by IH 2), we have (j, ¥/, %', mon {* < *} (app{K} £ (mon {x < #} £))) € ET[K].
Note that (j, ¥/, %/, mon {* < =} (app{K} £ (mon {* < *}£,))) € ET[K]iff (j, ¥’, %, assert K (mon {* & *} (£ (mon {* < *} £,
ET[K].
Therefore, this is sufficient to complete the case.
2) Unfolding the expression relation in our hypothesis, we have that there are (¢’,3), j such that (e, 3) —>JT

(¢/,>") with (¢’, ') irreducible.

If ¢’ = Err® then we're done, because the monitor will step to an error as well.

Otherwise, there is (k — j, ") 2 (k, ¥) such that 3" : (k — j, %) and (k — j, ¥’,3",¢’) € VT [t nKnK'].

This means 3¢ € dom(X’) such that e’ = ¢.

2024-03-08 17:45. Page 59 of 1-109.

60

We want to show (k — j, ¥/, %/, mon {K < ¢} e&§T[r MK M K'].
We destruct on whether 3’ () is a pair.
If 37 (£) = ({f1,£2), _), then by the OS, (2’,mon {K < £} —7(3/, {(mon {x & =} £;, mon {x < =} £)).
Then by Lemma 6.22, it suffices to show (k—j, ¥/, %/, mon {* < £} e&T[[fst(r)] and (k—j, ¥’, %', mon {* < &} €& [snd(1)]
These both follow from IH 2) (smaller by index).
Otherwise, by the OS, (£, mon {K < ¢} —1(2'[¢/ — (£,some(K’,K))], t’).
Then by IH 3), we get X' [¢/ — (£,some(K’,K))] : (k—j— 1, ¥ [¢' » K',K, ¥’ (£)]).
And by IH 1), we get (k — j — 1, W[/ — K',K, ¥’ (0)], ' [¢/ — (£,some(K’,K))],¢') € VT [tnKMK'].
These two facts are sufficient to complete the case.
3) We proceed by case analysis on K’ (note by the fact that + 3/, K « K’):

(a) K’ = Nat: Since we already know (k, ¥, %, £) € VHV[N]¥(¢), it suffices to show (k,¥,3,¢’) €
VN[K'] and (k, ¥, 2, ¢') € VN[K].
This is immediate from + ¥, which implies K’ « pointsto(3’, ') and K « pointsto(3/, ¢’).

(b) K’ = Int: same as the Nat case.
C = Bool: same as the Nat case.
K’ = Bool he N
= % X *: this case 1s a contradiction the fact that + 2.
d) K’ hi i diction by the fact th b
e = % — *: Since pointsto(2, £) o and pointsto(2,f) o< K, K = % or * — .
K’ Si i 2.t K’ and poi 2L K, K

Also, since - 3/, we get that ¥(¢) = [,7/] or [+ — *,7'].
From the fact that (k, ¥, 2, ¢) € (VWT[[‘I’([)]], we get that (k, ¥, 2, ¢) € "VWT[[*, 7]] or (k,¥,%,¢) €
VHT [+ — +7].
In the case of *, we can unfold and get (k — 1, ¥, 3, ¢) € "V?‘(Tﬂ* — %, ?]]
Otherwise we can get the same using Lemma 6.11.
Similarly, we want to show that (k, ¥’,%’,¢") € (VWT[[K’, K, ¥(6)].
By Lemma 6.11, in the K’ = * case, it suffices to show (k, ¥/,3’,¢’) € (VWT[* — % K, ¥(0)].
Solet (j,¥”) 3 (k,¥’), and let " 2 3’ such that 3/ : (j,).
Let & € dom(="") such that (j, ¥, 3", 8) € VT[+].
LetK”.
We want to show (j, ¥, 3", app{K"'} £’ £,) € EHT[K”, *, cod(¥(¢))].
By the OS, (3", app{K"'} t’ £,) —1 (X", assert K" (¢’ t,)).
By Lemma 6.20, it suffices to show (j — 1, ¥, 3", ¢’ £,) € EH [, cod(¥(¢))].
By the OS, (2”,¢’ ty) —1 (2, mon {x < =} (£ (mon {x < %} £,))).
By IH 2) (smaller by index), it suffices to show (j—2, ¥”", 3", £ (mon {* < =} £,)) € SWT[[*, *, cod(¥(£))].
By Lemma 6.28, it suffices to show (j—1, %"/, 3", assert = £ (mon {* & =} £)) € 8‘HT|[*, x, cod(¥(£))]
Then by the OS, it suffices to show (j, ¥, %", app{*} £ (mon {x < %} £,)) € EH [, *, cod(¥(¢))].
By IH 2), (j, %", %", mon {* < }£,) € VT[«].
Unfolding, we get that there exists some j’, ¢’’, """ such that (3", mon {x < x}) —>JT/ =", e).
If ¢’ = Err®, then we’re done because the entire application errors.
Otherwise, we get that there exists a (j — j/,¥””") 2 (j,¥”’) such that 3’ : (j — j/,¥"”") and
(=793 ") e VI«
Note by the operational semantics, j* > 1.

2024-03-08 17:45. Page 60 of 1-109.

Gradually Typed Languages Should Be Vigilant! 61

4)

By Lemma 6.11, we get (j — j/, 9", 2", ¢) € "V‘HT[[* — *7]]
Finally we can apply this hypothesis to the fact about e’” to get that (j — j/, ¥"”", 2", app{*} ¢’’) €
EHT %, , cod(¥(£))], which is sufficient to complete the case.

(f) K’ = =: unfolding the relation in what we want to show, the proof follows by IH 3) (smaller by index).
Unfolding the expression relation in our hypothesis, we have that there are (¢’,%’), j such that (e, 2) —>§.
(e’,%") with (¢’,’) irreducible.

If ¢/ = Err® then we’re done, because the monitor will step to an error as well.
Otherwise, there is (k — j, ¥’) 3 (k, ¥) such that 3’ : (k — j,¥’) and (k — j, ¥’,%",¢’) € (VWT[?]].
This means 3¢ € dom(>”) such that ¢’ = ¢.

We want to show (k — j, ¥’,%/, mon {x & x} {) € 87’(T|[*, x P (£)].

For ii), by OS, if 3’ (£) = ({t1, £2), _), then (', mon {* & ¢} —7(Z’, (mon {x & =} f1, mon {* & =} £2)).
Then by Lemma 6.23, it suffices to show (k — j — j/ — 1, ¥, %, mon {¥ & £} €VH [+, + 1] and (k — j —
J =1, 9,3, mon {x & &} €VH [+ 1].

Both of these follow from (4) (smaller by index).

Otherwise, by the OS, (X', mon {x & x}) —1 (3'[¢/ — (£, some(x, %))],£’).
We can finish the proof by applying IH 3) (smaller by index).

m}
LEMMA 6.30 (EXPRESSION RELATION IMPLIES ERRORING EXPRESSION RELATION). (1) If (k,¥,3,e) € ET[7] then
(k, ¥, 3, e) € EHT[7].
) If (k, 9,3, ¢) € VI[r] then (k,¥,3,¢) € VHT[7].
Proor. Proceed by induction on k and z:
e k =0:1)is immediate from 2).
— 7 = Int: immediate.
- =11 X 12: then 2(¢) = ({£1, &),).
The case follows from the IH on #; and £5.
— T =11 — 72: vacuously true.
- 7 = vacuously true.
e k > 0: 1) is immediate from 2).
— 7 = Int: immediate.
- =11 X 12: then X(¢) = ({£1, 2),).
The case follows from the IH on #; and ¢5.
- 7 =11 — 13: Follows from 1) from the IH (smaller by index).
— 7 = *: Follows from 2) from the IH (smaller by index), using * X *, %+ — =, or Int.
[m}

2024-03-08 17:45. Page 61 of 1-109.

62

6.2.3 Compatability Lemmas

(x0:Kp) €T
LEMMA 6.31 (T-VAR COMPATIBILITY). ———————
T'Fx:Kp
ProoF. Let (k,¥,%,y) € GT[T] such that 3 : (k, ¥).
We want to show (k, ¥, %, y(x)) € ET[[7].
Since x : 7 € T, we get that y(x) = ¢.
Since (k, ¥, %,y) € GT[[T], we get (k,¥,%,¢) € VT[z].
Then we get that (k, ¥, 2, ¢) € ST[[T]] immediately since ¢ is already a value and we have as a premise that > : (k, ¥). O
LEMMA 6.32 (T-NAT COMPATIBILITY). —————
[T+ no: Nat]
Proor. Let (k,¥,3,y) € §T|[1"]] such that > : (k, P).
We want to show (k,?,3,y(n)) € ST[[Nat]],
Note y(n) = n.
By the OS, we have (2,n) — 1 (Z[¢ +— (n,none)], ¢).
We get (k, ¥, %,) € (VT[[Nat]] immediately because n € T.
Since VT Nat] does not rely on ¥ or X, we have that (k, ¥[¢ > [Nat]],S[¢ — (n,none)], ¢) € VT[Nat].
Since £ > Nat, we have that (k, ¥[¢ — [Nat]],2[¢ — (n,none)],) € VT[Nat].
Similarly we have (k, ¥[£ — [Nat]],Z[£ > (n,none)],) € VH"[T]Nat.

Therefore, given we know 2 : (k, ¥), we know 2[¢ — (n,none)] : (k, ¥[¢ — [Nat]]). O
LEMMA 6.33 (T-INT COMPATIBILITY). ——————
|[F Fip: Int]]

Proor. Not meaningfully different from T-Nat O

LEmMA 6.34 (T-TRUE COMPATIBILITY), —————————
[T ¢ True : Bool]

Proor. Not meaningfully different from T-Nat O

LEMMA 6.35 (T-FALSE COMPATIBILITY), ——————————————
[T + False : Bool]

Proor. Not meaningfully different from T-Nat O

[To, (x0:Ko) Feo : 71]

[To F A(x0:Kp). e : s — 1]

LEMMA 6.36 (T-LAM COMPATIBILITY).

Proor. Let (k,¥,3,y) € §T|[l"]] such that 3 : (k, ¥).
We want to show (k, ¥,%, y(Ax; : K.e1)) € 8T|[* -].
Note that y(Ax; : K. e1) = Ax1 : K. y(eq).
Since Ax; : K.y(ep) is a value, by the OS we have (2,Ax; : K.y(e1)) —1 (Z[£ — (Ax1 : K.y(e1),none)]), where
t & dom(2).
We choose our later ¥’ to be ¥[£ — * — x].

We now have two obligations:
2024-03-08 17:45. Page 62 of 1-109.

Gradually Typed Languages Should Be Vigilant! 63

(1) (k=1,9[f+ * — *],3[= (Ax1 : K. y(e1),none)], &) € VI [+ = 1]
(2) Z[£+— (Ax1 : K.y(e1),none)] : (k— 1, ¥[f > = — x])

For 1), we want to show (k — 1, ¥[£ — % —], 2[£ — (Ax1 : K. y(e1),none)], Ax; : K. y(e1)) € VI [+ = n1].
Unfolding the value relation:

Let (j,9') 3 (k- L Y[+ * > x]) and 3 2 Z[¢ — (Ax1 : K. y(e1), none)] such that 3’ : (j, ¥’).

Let £ € dom(X’) such that (j, ¥/,3’, £,) € VT[+].

Let K.

We want to show (j, ¥/, %', app{K} ¢ £,) € ET[r, NK].

By the OS, if =K « 3(#,) then the application steps to an error and we’re done.

Otherwise, (3, app{K} ¢ £,) — 1 (¥', assert K y(e1)[£y/x]).

By the definition of substitution, y(e1)[fy/x] = y[x > &](e1).

Note that (j — 2, %, 3", y[x — £](e1)) € GT[T,x : K]:

i) (j-2¥,%,6) € VT[K] by Lemma 6.15 and Lemma 6.17.
ii) Vy € dom(y), (j —2,¥",3,y(y)) € VT[T (y)] by the premise about y and Lemma 6.15.

Therefore, we can apply the hypothesis to y[x — £], ¥/, %, and e; at j—2to get (j—2, ¥, 3, y[x — &](e1)) € ET[r1].
Finally, we can apply Lemma 6.18 to get (j — 1, ¥, 3/, assert K y[x > &,](e1)) € ET[r1 M K] which is what we wanted

to show.

For 2), first note the domains are equal, since dom(X) = dom(?).

Then note + X[¢ +— (Ax7 : K.y(e1), none] since + X.

Then let j < k — 1 andlet £/ € dom(Z[¢ — (Ax; : K.y(e1), none)]).

If ¢/ # ¢, then we get the remaining conditions from ¥ : (k, ¥) and Lemma 6.11.

If ¢/ = ¢, then note the structural obligation on ¥[¢ +— [+ — x]] is immediate.

We want to show (j, ¥[£ — % — *],Z[£ — (Ax1 : K.y(e1), none)],£) € VHT [+ — «].

Let (j,¥') 3 (k- LY¥[t— x> x])and 3’ 2 Z[¢ — (Ax; : K. y(e1),_)] such that ¥ : (j, ¥).

Let £, € dom(X’) such that (j, ¥, %", &) € VI[*].

Let K.

We get immediately that pointsto(X’, £,) « *, so we want to show (j, ¥/, 3/, app{K} £ £,) € EH" [N K].
By the 0S8, if =K o %(£,), then the application errors and we’re done. Otherwise, (2/, app{K} £ £y) — 1 (3, assert K y(e1)[£y/x]).
By the definition of substitution, y(e1) [y /x] = y[x > &](e1).

Note that (j — 2, %", %, y[x - &](e1)) € GT[[T,x : #]:

i) (j-2¥,%,6) € VT[K] by Lemma 6.15 and Lemma 6.17.
ii) Yy € dom(y), (j —2,¥",%,y(y)) € VT[T (y)] by the premise about y and Lemma 6.15.

Therefore, we can apply the hypothesis to y[x — £,], ¥, 3, and e; at j—2to get (j—2, %", 3, y[x — &](e1)) € ET[r1].
Then we can apply Lemma 6.30 to get (j — 2, %/, 3/, y[x — £](e1)) € EH" [n1].

We can then apply Lemma 6.21 to get (j — 2, ¥, 3/, y[x — &](e1)) € EHV[*].

Finally, we can apply Lemma 6.18 to get (j — 1,¥’,%/,assert K y[x — £](e1)) € 87—(V[[* M K] which is what we

wanted to show.

2024-03-08 17:45. Page 63 of 1-109.

64

|[F|-e() :T()]]
[Trer:m]

[[F F <60, €1> : TOXT1]]

LEmMMA 6.37 (T-PAIR COMPATIBILITY).

Proor. Let (k,¥,3,y) € §T|[l"]] such that 3 : (k, ¥).
We want to show (k, ¥, %, y({e1, e2))) € 8T|[r1 X 2]
Note y({e1, e2)) = (y(e1), y(e2)).
We can apply the first hypothesis to get (k, ¥, %, y(e1)) € ET[z1].
We can apply the second hypothesis to get (k, ¥, %, y(e2)) € ET[z2].
Then by Lemma 6.23, (k, ¥, 3, (y(e1), y(e2))) € 8T[[r1 X 2], which is what we wanted to show. O

[[1“ Fep: T()]]
|[F cast {K] = Ko} e : K1 MKpn T()]]

LEMMA 6.38 (T-CAST COMPATIBILITY).

Proor. Let (k,¥,3,y) € GT[T] such that = : (k, ¥).
We want to show (k, ¥, %, y(cast {K; < Ko} eg)) € ET[K1 M Ko M 1].
Note y(cast {K; < Ko} eg) = cast{K; < Ko} y(eo).
We can apply the first hypothesis to get (k, ¥, %, y(eo)) € ET[z]).
Unfolding the expression relation, there are j, %', ¢’ such that (%, y(eo)) _)]T (2’,¢’) where (2’, ¢’) is irreducible.
If ¢’ = Err® then we’re done, because the entire boundary expression errors.
Otherwise, we know there is a (k — j, ¥’) 3 (k, ¥) such that 3" : (k — j,¥’) and (k — j, ¥’,%’,¢’) € (VT|[1'0]].
This means 3¢ € dom(>’) such that e’ = ¢.
By the OS, (3, cast {K; < Ko} y(eo)) —>]T (3, cast{K; = Ko} t) —T1 (Z',mon{K; & Ky} ?).
By Lemma 6.15, (k — j — 1,'¥/,3/,¢) € ‘VT[[TO]].
By Lemma 6.29, (k — j — 1,'¥’,3',mon {K; & Ko} ¢) € 8T|[K1 M Ko M 0], which is what we wanted to show. =]

[Tre:x—>m]
[T Fer:z]

[T+ app{Ki}teper: Kimr]

LEMMA 6.39 (T-APP COMPATIBILITY).

Proor. Let (k,¥,3,y) € GT[T] such that = : (k, ¥).
We want to show (k, ¥, %, y(app{K1} e e2)) € ET[K1 M z1].
Note y(app{Ki} e1 e2) = app{Ki}y(e1) y(ez).
By the first hypothesis we have (k, ¥, %, y(e1)) € ET[* — 71].
By the second hypothesis we have (k, ¥, 2, y(e2)) € ST[[T(’)]].
By Lemma 6.21, we have (k, ¥, %, y(ez)) € ST[[*]].
Then we can apply Lemma 6.24 to get (k,¥,X, app{Ki}y(e1) y(e2)) € ST[[TI M K1]| which is what we wanted to
show. O

[[1“ Feg: J_]]
[TFer:rl
[T+ app{Ki}eoer:L]

LEMMA 6.40 (T-APPBOT COMPATIBILITY).

2024-03-08 17:45. Page 64 of 1-109.

Gradually Typed Languages Should Be Vigilant!

Proor. Let (k,¥,3,y) € GT[T] such that = : (k, ¥).
We want to show (k, ¥, %, y(app{Ki} e e1)) € ET[L].

By Lemma 6.16, we have that (%, e9) —7 (X', ¢)) where ¢) = Err®, which is sufficient to complete the case.

[[r Feop: TOXT1]]
LEMMA 6.41 (T-FST COMPATIBILITY).

[[F Ffst{Ko}ey: Ko T()]]

Proor. Let (k,¥,%,y) € GT[I1] such that = : (k, ¥).
We want to show (k, ¥, %, y(fst{Ko} eo)) € ET [0 M Ko |-
Note y(fst{Kop} e1) = fst{Ko} y(eo).
From the first hypothesis, we have (k, ¥, %, y(e)) € T [ro x 1].
Unfolding the expression relation, there are j,>’, ej such that (Z, y(eo)) —>]T (2", €}) and ¢ is irreducible.
If e = Err® then we’re done because the projection also steps to an error.
Otherwise, there is a (k — j, ¥’) 3 (k,'¥) such that 3" : (k — j¥’) and (k — j, ¥’,>', ¢)) € VT2 x 1]
Unfolding the location and value relations, we get that =’ (ej) = ({4, 1),).
By the OS, (3. fst{Ko} ep) —7, (E'fst{Ko} ¢f) — (3, assert Ko fo).

We can apply Lemma 6.15 to the premise that (k — j, ¥/, 3/, f) € VT [[r] to get (k — j — 1, ¥, %, &) € VT [].

Then we can apply Lemma 6.18 to get (k — j — 1, ¥/, %, assert Ko &) € &7 [0 M Ko].
Finally, we can apply Lemma 6.11 to get that 3" : (k — j — 1,'¥’), which is sufficient to complete the proof.

[[F Fep: J_]]
LEMMA 6.42 (T-FSTBOT COMPATIBILITY).

|[F Ffst{Ko} e : J_]]

Proor. Let (k,¥,%,y) € GT[T] such that 3 : (k, ¥).
We want to show (k, ¥, %, y(fst{Ko} ep)) € ET[L].

By Lemma 6.16, we have that (2, e9) —7 (2, ¢j) where e) = Err®, which is sufficient to complete the case.

|[F Fep: ToXT]]]

LEMMA 6.43 (T-SND COMPATIBILITY).
[[F F snd{Kl} e : K1 M T]]]

Proor. Not meaningfully different from the T-Fst case.

[[r Feo: J_]]
LEMMA 6.44 (T-SNDBOT COMPATIBILITY).

[[F Fsnd{Ki}eg : J_]]

Proor. Not meaningfully different from the T-FstBot case.

[[rl—e():To]]
|[FI—€1:T1]]

[T v binopey e1 : A(binop, o, 71) ||

LEMMA 6.45 (T-BINOP COMPATIBILITY).

Proor. Let (k,¥,3,y) € GT[T] such that 3 : (k, ¥).
We want to show (k, P, S, y(binopeg e1)) € ST[[KZ]].
Note y(binopeg e1) = binopy(eo) y(e1).
By the first hypothesis applied to y we have (k, ¥, y(eo)) € T[]
2024-03-08 17:45. Page 65 of 1-109.

65

66

Unfolding we get there are j, X', ¢; such that (2, y(eo)) —>JT (%', ¢)) and e; is irreducible.
If e(’) = Err® then we’re done, because the whole operation errors.
Otherwise there is a (k — j,¥’) 3 (k,¥) such that 3" : (k — j,¥’) and (k — j, ¥, %', ¢;) € VT[]

Note by Lemma 6.15 and Lemma 6.11, we have (k — j, ¥/,3",y) € GT[I1] and 3’ : (k — j, ¥’).
By the second hypothesis applied to y we have (k — j, ¥’,%’,y(e1)) € ET[n1].

Unfolding we get there are j/, 3", e] such that (3',y(e1)) —4 (=", e7) and e] is irreducible.
If ¢] = Err® then we’re done, because the whole operation errors.

Otherwise, there isa (k- j— j',¥"") 3 (k—j, ¥) such that " : (k- j—j', ") and (k- j—j', ¥",Z",e]) € VT[r].

From the definition of A, K3 = Int or Nat or L.

In the case of L, we’re done because either 7 or 71 is a L, which is a contradiction.

Otherwise, the cases proceed identically, so without loss of generality assume Ky = Int.

70 = 11 = Int, and therefore pointsto(2"’, ()e}) = ip and pointsto(Z”, e]) = i1.

If binop = quotient and i1 = 0 then (=", binope; e]) —7 (Z”, DivErr), so we’re done.

If binop = quotient and i1 # 0, then (2", binopege7) —71 (X", i0/i1) —1 (Z”[£ > (iv/i1,none)], £).
Since i /i1 € Z, we're done.

If binop = sum then (X", binopej e]) —1 (X", io +i1) —>1 (3" [€ = (ip + i1, none)], £).

Since iy + i1 € Z, we're done. O

[T F e : Bool]
[[F Fep: To]]
[[F Feg: Tl]]

[T Fif e then e; else ex : 79 L 71 |

LEMMA 6.46 (T-IF COMPATIBILITY).

Let (k,¥,3,y) € GT[T] such that 3 : (k, ¥).
We want to show (k, P, 3, y(if eg then e; else e3)) € ST|[TO Ur].
Note y(if ey then e else e2) = if y(ep) then y(eq) else y(ez).
From the first hypothesis applied to y, we know (k, ¥, %, y(e)) € ET [Bool].
Unfolding, we have that there is 3’, ¢(, j such that (Z, eo) —)é. (%', eg) where ¢ is irreducible.
If e(’) = Err® then we’re done, because the entire if statement errors.
Otherwise, there is a (k — j, ¥') 2 (k, ¥) such that 3" : (k - j,¥’) and (k - j, ¥',3',¢)) € VT Bool].

Unfolding the location and then the value relation, we get that pointsto(Z’, ej) = True or pointsto(X’, ¢j) = False.

e pointsto(>’, ¢f) = True: Note by OS, (Z, if y(eop) then y(e;) else y(ez)) —>§. (2, if e) then y(e1) else y(e2)) —1
(& y(e).
By Lemma 6.15 and Lemma 6.11, we have (k — j — 1, ¥/,3’,y) € GT[I] and 3’ : (k — j — 1, ¥).
From the second hypothesis, we get (k — j — 1, ¥, %', y(e1)) € ET[n].
Finally, by Lemma 6.21, we get (k — j — 1, ¥, %, y(e;)) € T [z U 71]| which is sufficient to complete the proof.
e pointsto(Z’, ¢)) = False: same as other case except replace e; with e;.

2024-03-08 17:45. Page 66 of 1-109.

Gradually Typed Languages Should Be Vigilant!

Proor.
[[F Fep: J_]]
[[F Fep: T()]]
[[F Feg: T1]]

[Tk if e then e else ex : L]

LEMMA 6.47 (T-IFBOT COMPATIBILITY).

Proor. Let (k,¥,3,y) € GT[T] such that 3 : (k, ¥).
We want to show (k, ¥, %, y(if ey then e; else e3)) € ET[L].

By Lemma 6.16, we have that (, e9) —7 (2, ¢j) where e) = Err®, which is sufficient to complete the case.

[T+er:m]
T1 <1

LEMMA 6.48 (T-SUB COMPATIBILITY). ———————
[[F Fep: TZ]]

Proor. Let (k,¥,3,y) € GT[T] such that = : (k, ¥).
We want to show (k, ¥, %, y(e1)) € ET[z].
From our hypothesis, we have (k, ¥, 3, y(e1)) € ST[[Tl]].
We can apply Lemma 6.21 to finish the case.
6.2.4 Transient with Truer Transient Typing is Vigilant

THEOREM 6.49 (TRANSIENT WITH TRUER TRANSIENT TYPING IS VIGILANT). If[e : 7 then [re:z]|T

Proor. By induction over the typing derivation, using the compatability lemmas.

2024-03-08 17:45. Page 67 of 1-109.

67

68

7 Vigilance for Tag Typing

7.1 Vigilance Logical Relation for Tag Typing

In this section, V7 refers to (Vtzg, ET refers to S,Z;g, VHT refers to (Vﬂz;g, and VHT refers to “Vﬂgg.

[T rtag e : K[* 2 V(k, ¥, %, y) € GL[T] where 3 : (k,¥). (k, ¥, %, y(e)) € EL[K]

GHT.x K] 2 {(k¥,%y[x - €]) | (k¥,%y) € GH[T]
At € dom(¥) A€ & dom(y)
A (kY3 0) € VE[K]}

G'lel £ {(k.¥.2,0)}

FX 2 Ve e dom(D). 2(¢) = ((£/,some(7’, 7)) A T’ « pointsto(3, £) A T o« pointsto(3, £)
A = %X o< pointsto(Z, £))

V 2(f) = (v, none) where v ¢ L

3 (k¥) 2 dom() = dom(¥) A 3 A Vj<ktedom(S).((j,¥,%¢) € VHE[¥(0)]
A (@) = (¢, some(r, 7)) = Y(¢) = [Lr], L[], T ()]A

A (2(£) = (v,none) Ao ¢ L = IK.¥(¢) = [K]))

(,¥) 3 (kW) 2 j < k AVE € dom(¥). ¥ (£) = ¥(£)

EHMK] £ {(k¥.5.¢) |Vj < k.VE' 23.¢. (S.e) —] (3,¢/) Adrred(e)
= (e =En* Vv @k-4,¥)3(k¥).2: (k- ¥)A(k-j,V,5¢) e VHK]))}
VHUInt, Ky, ... Kn]| 2 {(k, ¥,5,0) | VK € [Int, Ko, ... Kp]. (k, ¥, %, ¢) € VE[K]}
VHY[Nat, Ky, ... Kp] £ {(k,¥,%,¢) | VK € [Nat, Ky, ...Kp]. (k, ¥, %, £) € VE[K]}
VHE[Bool, Ky, ... Kp] £ {(k,¥,3,¢) | VK € [Bool,Ky, ... Kp]. (k, ¥, %,) € VL[K]}

2024-03-08 17:45. Page 68 of 1-109.

Gradually Typed Languages Should Be Vigilant!

VHE[x x5, Ky, ... Kn]| £ {(k, ¥, 5, 0) | 2(€) = ({&1, &),)
A (kY5 0) € VHEY[x fst(Ky), . . . fst(Kn)]
A (Y, 3, 8) € VHE [+, snd(Ky), ... snd(Kp) ||}

VH [+ - « Ko, .. . K] = {(k, ¥, %, 0) |V, ¥') 2 (k,¥),3’ 2 % where 3’ : (j, ¥'). Vro.
V¢, where (j, ¥, %, ¢,) € VL[[*]]
(9’3’ app{ro} € &) € EH [[L70), cod(Kz),. .. cod(Kn)]]}

VH K, ... Kn] 2 {(k,¥,%,0) | (k- 1,%,%,¢) € VHE[Int, Ky, ... Ky
(k—1,%,%,¢) € VH[Bool,K, ... K]
V(k— 1,93 € VH [+ x %Ky, ..., Kn]
V(k-1,%3%¢) € VH [+ - « Kp, ..., Kn]}

ELK] £ {(k¥.5e) |Vj <k.VE 25.¢. (Se) —] (5,¢) Adrred(e)
= (e =Er*Vv@k-,¥)3 k). : (k- V)=, V.5, ¢) e VEK])}

VEL[Int] £ {(k,¥,3,¢ | pointsto(Z, £) € Z}
VL[Nat] £ {(k, ¥, %, ¢ | pointsto(Z, £) € N}
VL[Bool] £ {(k,¥,%,¢ | pointsto(3, £) € B}

VI x] 2 {(k, 0, 2,0) | 2(0) = (b1, &),) A (KL.2,8) € VL[] A (kF,3 &) e VE[«]}

VEH* - «] = {(k, ¥,%,0) | Y(j,¥) 2 (k, ¥). V2’ D = where 3’ : (j, V).
Ve where (j, ¥, %",) € VI[+]. Vro.
(j+1,¥,5 app{ro} £ £) € E[Lol]}

2024-03-08 17:45. Page 69 of 1-109.

69

70

VEH] 2 (¥, %, 0) | (k- 1,%,%,£) € VE[Int]
(k-1,%,%,¢) € VE[Bool]
V(k=1,%3,¢) € VI« x]
V(k-1,%,3,¢) € VE[x —]}

7.1.1 Truer Relation implies Tag Relation
LEMMA 7.1 (TRUER SUB RELATIONS IMPLY TAG SUB RELATIONS). Vk, ¥, 3.

(1) (k¥.2.0) € Vi [K] iff (K 9.2.0) € VK]
@) (k93¢ &L [K] iff (k. .5, e) € EL_[K]

tru tag

3) (¥,%,0) € VHL [K, ... Ka]| iff (k9,3 0) € VHL [K1, ... K]

tru

4) (k,¥,%¢e) € EHL [Ki,...Ka] iff (k. ¥, %, ¢) € EHL_[K1....Kn]

tru tag

(5) 2 (k,9) iffz ‘tag (k,¥)

ProoF. Let k, ¥, X. Proceed by induction on k.

e k=0:
(1) Case split on K:
— K = Nat, Int, Bool: immediate by definition.
- K=xXx=if X(f) # ((f1,), _) then the condition is vacuously true.
Consider when %(¢) = ({f1, £2),).
It suffices to show (0,3, ¥, #;) € (Vt{u[[*]] iff (0,3,9,£) € ’Vtgg[[*]], and similarly for .
Unfolding both sides, this is vacuously true.
— K = — «: In both directions, it suffices to show that given 3’ 2 3 and (0,%”) 2 (0, ¥) such that
> :(0,¥’), and given (0,¥’,3',¢,) € (VtT|[*]] and given some K’, then (1, ¥’,3/, app{K’} ¢ £,) €
StT|[K’ 1.
Unfolding, (0,%,3’,¢,) € (VtT|[*]] for either ¢ = tag, tru vacuously.
Therefore it suffices to show (1,¥’,%’,app{K’} ¢ £,) € StTag[K’]] iff (1,9,%,app{K’}t t,) €
ELIK']
Since application are guaranteed to take 2 steps, this is vacuously true.
— K = «: Unfolding, this is vacuously true
(2) This case reduces to 5) and 1).
(3) The same reasoning in 2) applies here.
(4) This case reduces to 5) and 3).
(5) Unfolding the definitions, this is vacuously true, besides for the identical structural requirements.
o k=i+1:
(1) Case split on K:
— K = Nat, Int, Bool: immediate by definition.
2024-03-08 17:45. Page 70 of 1-109.

Gradually Typed Languages Should Be Vigilant! 71

- K=#Xx=ifX(f) # ((f1,), _) then the condition is vacuously true.
Consider when %(¢) = ({f1, £2),).
It suffices to show (k, X, ¥, ;) € (Vt{u[[*]] iff (k,2, ¥, 6) € (Vtgg[[*]], and similarly for #.
Unfolding the * relation on both sides, this follows from the induction hypothesis 1).

— K =% — «: In both directions, it suffices to show that given 3’ 2 ¥ and (j, ¥’) 2 (k, ¥) such that
> 1 (j,¥’), and given (j, ¥, 3/,) € (VtT|[*]] and given some K’, then (j+ 1, ¥",3/, app{K’} £ &) €
StT [K']-

First, we’d like to show that (j, ¥/,3%’,¢,) € (Vt€g|[*]] iff (j, 9,3, ¢,) € "Vt{u[*]]
Unfolding the * case of the value relation, it suffices to show 3K’ # = such that (j — 1, ¥/,3,£,) €

VEIJK T (- 1%, %, 8) € VLK.

This follows by the induction hypothesis 1), since j — 1 < k.

Then, it suffices to show (j + 1, ¥",3’, app{K’} t £,) € 8£g|[K’]] iff (j+1,¥.,%,app{K’}t¢,) €
ELIK']

Since applications are guaranteed to take at least two steps or error, this follows from the induction
hypothesis 2).

- K = x: Unfolding both sides, this follows a straightforward case analysis and the induction hypothesis

1).
(2) This case reduces to 5) and 1).
(3) Case split on Kj:
— Kj = Nat, Int, Bool: follows from repeatedly applying 1) with each K in [Kj,...Ky].
- Ki =« x*if () # ({1, £2), _) then the condition is vacuously true.
Consider when 2(¢) = ({f1, £2),_).
It suffices to show (k, 2, ¥, £1) € "V?—(tTru[[*,fst(Kg), L fst(Kn)] i (K, 3,8, 6) € (Vtgg[[*,fst(Kz), .. fst(Kn)],
and similarly for #s.
Unfolding both sides, this follows from the induction hypothesis 1).

- Kj = * — x: In both directions, it suffices to show that given 3’ 2 ¥ and (j, ¥”) 3 (k, ¥) such that
> 1 (j,¥'), and given (j, ¥’, %/,) € (VtT[[*]] and given some K’, then (j+1,¥",3/,app{K’} ¢ &,) €
EHTK, cod(Ky), . .. cod(Kp)].

First, we’d like to show that (j, ¥/,%’, £,) € (Vtzg[*]] iff (j,¥,%,6,) € (Vt{u[[*]]

Unfolding the * case of the value relation, it suffices to show 3K’ # = such that (j — 1, ¥/,3’,£,) €
VEIJK T (- 1,¥,%,6) € VLK.

This follows by the induction hypothesis 1).

Then, it suffices to show (j + 1,¥',%/, app{K’} ¢ &) € SWtTru[[K’, cod(K3), ... cod(Kp)]. iff (j +
LY, 5, app{K'} £ £,) € EHL,[K', cod(Ky). ... cod(Ky)].

Since applications are guaranteed to take at least two steps or error, this follows from the induction
hypothesis 4).

— Kj = *:Unfolding both sides, this follows a straightforward case analysis and the induction hypothesis

3).
(4) This case reduces to 5) and 3).
(5) Unfolding the definitions, besides for the identical structural requirements, it suffices to show for j < k,
(%%, 0) € VHL[¥ (O] iff (. 9,5, 0) € VHE[¥(0)], which follows from 3).
2024-03-08 17:45. Page 71 of 1-109.

72

]

LEMMA 7.2 (TAG CONTEXT RELATION IMPLIES TRUER CONTEXT RELATION). (k,¥,%,y) € gtTm[[r]] iff (k,¥,2,y) €
Gl

Proor. It suffices to show Vx : K € T. (k, ¥, 3, y(x)) € (Vt{u [K] iff (k, ¥, %, y(x)) € (Vtzg [K], which follows from
7.1. m}

THEOREM 7.3 (TRUER RELATION IMPLIES TAG RELATION). If[[T Firy € : K]]T then [T Frag € : K]]T

Proor. Unfolding the goal, let (k,¥,3,y) € g{ag[[r]] where X :t5g (k, V).
By 7.2, (k,¥,%,y) € GL [T].
By 7.1, 2 itry (K, P).
By the premise, (k, ¥, 3, y(e)) € 8t7;u [K]-

By 7.1, (k,¥,3, y(e)) € StTag [K], which is what we wanted to show.

7.2 Vigilance Fundamental Property for Transient with Tag Typing
THEOREM 7.4 (TRANSIENT IS TAG VIGILANT). IfT biag € : K then [T Frag € : K]]T
Proor. By Theorem 4.10, we have that there exists some 7 < K such that T k€ : 7.

By subsumption, we have that I k¢, e : K.

By Theorem 6.49, we have that [T +yy e : K]|7.

By 7.3, we have the vigilance result. O

2024-03-08 17:45. Page 72 of 1-109.

Gradually Typed Languages Should Be Vigilant! 73

8 Contextual equivalence

8.1 Contextual Equivalence Logical Relation—No Store

DivErr ~ DivErr
TypeErr(z, v) ~ TypeErr(7/, v’)
[T Few €1 < ez i)& = Yk y1,y2) € GEIT]. (ko yi(en), ya(en)) € E4r]

[T ey e1 gt ‘[]]é: 2 [Tryuer <ep: ‘[]]é AT by €2 < € :r]]é

G x 7] 2 {(kyilx = vil, y2lx = 02]) | (k,y1,72) € GE[T]
A (ko1,02) € VE[]}

GL[e] = {(k.0,0)}

L[] £ {(kee2) | V) < koe]. e —) ¢ Airredi(e])

= Jej. e2 —] e

Aej ~ ey € Err® v (k—jef,e5) € VL)

(VL[[Int]] 2 {(k,v1,02 |v1 =02 € Z}
(VL|[Nat]] 2 {(k,v1,v2 | v1 = vy € N}
VL[Bool] £ {(k,v1,05 | 01 = 03 € B}

VL[t x 2] 2 {(k, (01,1, 012), (02.1,022)) | (k,v1,1,021) € VE[r1] A (kv21,022) € VE[2]}

VE[r1 >] £ {(kov1,02) | V) <k,
Vo!, v, where (j,0],03) € (VL|[1'1]].
VK,K’ where KM =K' M.

(j.app{K} vy v}, app{K’} vz v}) € EL[K M]}

2024-03-08 17:45. Page 73 of 1-109.

74

VE[] £ {(k, 31,32, 61, 6) | (k- 1,01,02) € VE[Int]
(k - 1,01,02) € VE[Bool]
V(k = 1,01,02) € VE[+ x +]
V(k - 1,01,02) € VE[+ — «]}

Vi) 2o

8.2 Context typing

Truer transient contexts:
E = [] | AM(x:K).E|(e,E) | (E,e) | app{K} e E | app{K}E e | fst{K} E | snd{K} E
| binopeE | binopEe | cast{K < K} E | if E then e else e | if e then E else e | if e then e else E

2024-03-08 17:45. Page 74 of 1-109.

Gradually Typed Languages Should Be Vigilant! 75
T-Ctx-HoLE T-Ctx-Lam T-Ctx-PAIR-1
I'cr I, (x:K)ru E: (T > 1) wo 7 Tryw E: (T o 1) wo 1q | R
Tryu [J: @ p7) w1 T by A(x:K).E: (I, (x:K)p 1) o x> 1 T riw (Ere) : (T > 1) o 11 X1y
T-Ctx-PAIR-2 T-Ctx-APpP-1
Tryue:Tt Trgg E: (I o 7) wo 1p Trgg E: (I 1) wo x> T Feue: T
T kiry (€, E) : (T" > 1) s 11 X1y Tty app{K}Ee: (T'»7) w» KN7y
T-Ctx-AprpPBoT-1 T-Ctx-App-2
Tryw E: (T > 17) wo L | R Thiyye:*x—11 Triw E: (T > 7) v 1p
T big app{K}Ee: (I">17) » L T iy app{K}eE: (I'>17) > KMN1y
T-Ctx-AppBoOT-2 T-Ctx-Fst T-Ctx-FstBoT
Thyge: L Triw E: (T > 7) w1 Trgu E: (To1) v 1y X10 Tryu E: (To1) > L
T big app{K}eE: (I"> 1) » L T rgu ISt{K}E: (T>7) W KMy T bipy fSt{K}E: (T>7) » L
T-CTx-SND T-Ctx-SNDBOT
Tryu E: (To 1) w1y X1p Tryw E: (To1) » L
Tty SNd{K}E: (T>7) W KT 1y [ty SNA{K}E: (T>7) » L
T-Ctx-Binop-1 T-Ctx-BiNnop-2
ITtyu E: (To1) v g | R | R S Tryw E: (To1) w1
T bery binopEe : (T > 1) ~> A(binop, 11, 12) T bery binopEe : (T > 1) ~ A(binop, 11, 12)
T-Ctx-BND-1 T-Ctx-Ir-1
Triw E: (To 1) ~o ¢ T tiy E: (T'> 1) ~ Bool T by €171 T by €20 T2
Thyycast{K; =K1} E: (Te1) w KoMK N7 T by if Ethenejelsees : (To7) ~ 1 LTy

T-Ctx-IrBoT-1
ITrigu E: (To1) > L Thirger:m I by €2 : 72

T gy if Ethenejelseey : (To7) v L

T-Ctx-IF-2
T Firy €p : Bool Tryu E: (To1) w1 Thiyuer:m

T by if ey then Eelse ez : (T 7) w71 Uty

T-Ctx-IFBoT-2
I'rruep L Fl-truE:(FPT)M/)Tl T'rrwex:m

T biry if ey then Eelse ey : (T>17) v L

T-Ctx-Ir-3
T Firy €p : Bool | S 21 Tryu E: (To 1) v 1

T reyifep thenejelse E: (T 1) w7y Uy

T-Ctx-IrBoTt-3
2024-03-08 17:45. Page 75 of 1-109. | Feru €p : L [hguer:n Trw E:(To1) ™o

T bry if ey thenejelse E: (T>17) v L

76

8.3 Contextual equivalence statement
We define a logical relation for contexts:
[T Fery C1 = Co i (T > 1) ~o '] 2 Vey, e2.[T Firu 1 ® €2 : 7] = [T Feru C1le1] = Calez] : 7]

We define an abbreviation for the notion that an expression reduces to an eventual value without encountering an

error: el} = Je’. e —7 ¢’ A (val(e’))
THEOREM 8.1 (EXPRESSION RELATION IMPLIES REDUCTION EQUIVALENCE). If[[T Firy €1 ~ €2 : 7], thener | © ez |.
Proor. By applying Lemm 8.2 in both directions. O
LEMMA 8.2 (EXPRESSION RELATION IMPLIES REDUCTION EQUIVALENCE). If[[T kiry €1 < €3 : 7], thenei] = ez).

Proor. Since e; |}, then there exists some ei, k s.t. e —>f

We want to show that e} . Instantiate the premise with (k, @, 0), obtaining that (k, e, e2) € &t [z]- Instantiate j

e; and e is a value and hence irreducible.

with k and e] with e{, observing that e] being a value entails it is irreducible. Then e; from this relation is just what we

need, since ey reduces to it, and it is syntactically a value. O
The usual definition of contextual equivalence is then:
T hre1 ~ €2: 72 VC 0 by C: (T 7) w7/ = (Cler] | & Clez] 1)

THEOREM 8.3 (BINARY RELATION IS SOUND FOR CONTEXTUAL EQUIVALENCE). If[[T biry €1 % €3 :]|, then T kypy €1 =%

ey :T.

Proor. Consider an arbitrary type 7’ and context C s.t. ® ryy C @ (I > 7) ~» 7/. Then we must show that
Cler]Je Clez] I. By Theorem 8.1, it is sufficient to show that [iy Cler] ~ Clez] : 7]
By Theorem 8.71, [+ry C ~ C : (T » 1) ~»» 7] Unfolding this definition and instantiating it with e;, ez, and our

hypothesis about them, we obtain precisely the required conclusion. O

8.4 Binary relation—Proofs
8.4.1 Lemmas Used Without Mention

LEMMA 8.4 (VALUES ARE IN THE S-RELATION). If (k,0,0") € VL[1], then (k,0,0") € E£[7].

Proor. Consider arbitrary j s.t. o —/ vr Airred g (vr). Note that j must be equal to 0 since values do not reduce.
Then choose v” as the e;, of the expression relation; it is easy to see that v’ reduces to v” in some number (0) of steps. By

our assumption, (k — 0,0,0") € (V'[’[[T]], so we are done. [m]

LEMMA 8.5 (ANTI-REDUCTION - HEAD EXPANSION - EXPRESSION RELATION CoMMUTES WITH STEPS). If (k, €], €7) €
ET([z] and e; —>jT e] and ey —>jT ey, then (k + j,e1, e2) € T[]

Proor. Consider arbitrary j’, e}’ s.t. e —>JT ey . If j/ < j, by determinism of the operational semantics, e;" must

not be irreducible and so we are trivially done. Otherwise, assume irredT(e{’) and j* < k + j; we must show that
Jey.ea —7 e A(e) ~ef €Er® Vv (k+j—j e e)) € VT[z].
Instantiate the hypothesis with (k + j* — j, e{’). Since k + j* — j < k and the operational semantics are deterministic,

’
2

immediately. O

this gives us that Je}’.e; — 7. e}’ A(ef = ey € Err®* VvV (k+j—j’ el e)) € VT 7], from which our conclusion follows

2024-03-08 17:45. Page 76 of 1-109.

Gradually Typed Languages Should Be Vigilant! 77

LEMMA 8.6 (ANTI-REDUCTION - HEAD EXPANSION - STEPS COMMUTE WITH EXPRESSION RELATION). If (k + j,e1,e2) €

ET([7] and e; —>jT e] ande; —>jT e}, then (k, e}, e}) € ET[r]

J o
Toel
AN, ’ "o L] s/ 1’ 7 T
We must show that Je.e; — 7. e} A (e’ ~ e € Err® Vv (k- j' el e)) €V =1

Proor. Consider arbitrary j’,]’ s.t. j* < k A irredr(e;’) Aej —

Instantiate the hypothesis with j+ ', ;. Since j* < k, j+j" < k+ j. Since the operational semantics are deterministic
. o ’ .
and transitive, the other conditions apply. Then the hypothesis provides precisely the appropriate e’ and conditions on

it and ei’. O

We define a notion of tags extended with bottom that are compatible with the usual lattice:

Kt=K|1
o 1 ifK+ =1
|[K+| otherwise
False ifKt=1
OCJ' (KJ_’ U) —

voc Kt otherwise
LEMMA 8.7 (TAGOF-BOT IS COMPATIBLE WITH MEET). |Ki" MK3- |+ = |Kj- |+ 1 [Kj- |-,
Proor. Immediate, by unfolding definitions and case analysis. O
LEMMA 8.8 (RELATION IMPLIES TAGMATCH). If (k,v,0") € VL[r] and K* <)%, then ot (KL, 0).

ProOF. By case analysis on 7 and K; in each case this follows immediately from unfolding the definitions of V

and tagmatch. O

8.4.2 Lemmas Used With Mention

LEMMA 8.9 (RELATED VALUES HAVE MATCHING CONSTRUCTORS). If (k,0,0") € (VL[[T]], then either
e v=0
: ’ ’ —_ ’ ’ 7’
o There exist some v1, 02,07, 05 S.t. 0 = (v1,02) and v’ = (0], v5)

o There exist some w,w’ s.t.v =w andv’ =w’.
Proor. By induction on 7, unfolding the definition of ‘V in each case. O
LEMMA 8.10 (TAGMATCH IS UP TO APPROXIMATION). If (k,0,0") € VT[[r], then ot (K, v) oot (KL, o).
ProoF. By Lemma 8.9 and inspection of the definition of < (K,). O
LEmMA 8.11 (TAGMATCH RESPECTS MEETS). o (K" MK, v) oot (K, 0)A ot (K5, 0).
ProoOF. By case analysis on K3, KéL; in each case the conclusion follows immediately by unfolding. O

LEMMA 8.12 (TAGMATCH IMPLIES VALUES IN RELATION AT MEET). If (k,0,0") € VT[r] and <t (K*, v), then (k —
1,0,0") € ‘VT|[KJ' nrj.

ProOF. Proceed by case analysis on K*:
2024-03-08 17:45. Page 77 of 1-109.

78

* By lattice properties, K* Mt = 7, so this is trivial by Lemma ??.

Nat By the definition of tagmatch, v must be a natural number. By inspection, this is possible only when 7 is *, Int, or
Nat; in each case, K* 1M 7 = Nat. By inspection on the relation, v always satisfied what is needed.

Int Analogous to the Nat case above.

#*X* By the definition of tagmatch, v must be a pair; by inspection this is possible only if 7 is * or some pair type. If
the latter, K* M 7 = 7, and so the conclusion is immediate; otherwise, K+ M 7 = %X, and the conclusion is
immediate from the definition of the = case of the relation.

*— % By the definition of tagmatch, v must be a w; by inspection this is possible only if 7 is * or some function type. If
the latter, K+ M 7 = 7, and so the conclusion is immediate; otherwise, K+ M 7 = *+ — %, and the conclusion is
immediate from the definition of the * case of the relation.e

1 Contradiction

LemMA 8.13 (E-V-MONOTONICITY). (1) If (k,e1,e2) € 8T[[r] and j < k, then (j, e, ez) € ET[7].
) If (k,v1,02) € VT[z] and j < k, then (j,v1,02) € VT[z].

Proor. Proceed by simultaneous induction on k and :

e k = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.
e k>0
1) Unfolding the expression relation in our hypothesis, we get that there is some ef, j* such that e; —>jT, el
and some e} such that e; —7 €.
If e] = Err® then we’re done.

Otherwise, (k — j’, e{, ;) € VT[7].

Now, unfolding the expression relation, we want to show (k — j — j’, e}, }) € VT[7].
We can apply the IH 2) with the fact proven in a).

2) We want to show that (k — j,01,02) € VT[r].
We case split on 7:

i) 7 = Nat: then where n € N, so the case is immediate.
ii) 7 = tint: same as above.
iii) 7 = Bool: same as above.

iv) 7 =1 X 72: Then unfolding our hypothesis gives us v1 = (0], 0]") and vz = (v, 07") with (k,v],05) €
VT [71] and (k, vy 0y) € VT[]
The case follows by applying the IH 2) to both premises.
V) T=% > 1:Let j/ < k—j.
Let (j',0,03) € VT[«].
Let K,K’.
2024-03-08 17:45. Page 78 of 1-109.

Gradually Typed Languages Should Be Vigilant! 79

We want to show (j’, app{K} v1 0], app{K"} vz 0}) € ET[K M z].
Since j* < k — j < k, we can apply the hypothesis to complete the case.

vi) 7 = *: we want to show (k — 1,01,02) € VT[Int] or VI[Bool] or VT [+ x «] or VT [+ — x].
This follows from IH 2) (smaller by index).

O

LEmMA 8.14 (MONADIC BIND). Suppose that E1, Eo are any evaluation contexts (n.b. not a general context, as used else-
where in these proofs), (k, e1, e2) € ET]|, and for all k', vy, va, ifk’ < kA(K',01,v2) € VT[z] then (k’, E1[v1], E2[v2]) €
ET'].

Then (k, E1[e1], Ez[e2]) € ET[[7].

Proor. Consider arbitrary j, e] s.t. j < k A Eq[eq] —>1T e; A irredr(e]). Then we must show that must show that
Jej.Exez] —7 €5 A(e] = ey € Err® v (k—j,ef,e5) € YT]).

Because Eq[e;] reaches an irreducible term in at most j steps, by our operational semantics e; must itself reduce to
some irreducible term e in some smaller number of steps j’ < j. Then since j* < jAe; —)é. e3 A irredr(es), we can

instantiate our first assumption, obtaining that there similarly exists e4 s.t. ey —>*T esN(es ~eq € Err®Vv(k—j' e3 eq4) €

VT[].

Suppose that e3 ~ e4 € Err®. Then by the operational semantics, E1[e1] and Ez[e2] reduce to the same errors, so
instantiating e and e, with them proves our goal.

Otherwise, we know that (k—j’, e3, e4) € (VT[[T]]. We may therefore instantiate our other assumption with k—j/, €3, e4
and this fact, obtaining that (k — j/, E1[e3], Ez[eq]) € ET[[z]. We still must show that Jej.Ezle2] —T e A(ej~ex €
Ere® v (k- j,e},e)) € VYT[]).

Instantiate the result of our assumption with step index j — j* < k — j* and e{. By determinism of the operational
semantics, E1 [es3] —%._j’ e{, so we obtain that Jej.Ez[ea] —7 ey A(eg ~ e) € Err®V(k—j' = (j—j') e],€7) € YT[].

Note that k— j" — (j — j’) = k— j, and that since E3[e4] — and e; — 7 eq, then Ez[e2] —7. €7, so this is precisely

* e/

T "2 T "2

the e;, that we needed to show the existence of. O
LEMMA 8.15 (CHECK COMPATIBILITY). If (k,0,0") € ET[[r] andt’ = KMt = K’ M, then (k, assert K v, assert K’ v’) €

ET[7'].

Proor. Proceed by case analysis on K 11 7:

K Mt =1 Then it must be the case that K o v and K’ « v’, meaning assert Kv — T v and assert K’ " — v’, which
is sufficient to complete the case.

K Nt = Natand r = Int Unfolding our hypothesis, we get that v = v’ and v € Z.
If v € N, then assert K v —7 v and assert K’ v’ — o’, which is sufficient to complete the case.
Otherwise, assert Kv —> 1 TypeErr(Nat, v) and assert K’ v/ — TypeErr(Nat, v’), which is sufficient to
complete the case.

KMt =1 Then assert Kuv —7 TypeErr(Nat, v) and assert K v" —7 TypeErr(Nat, o), which is sufficient to com-
plete the case.

Knrz=Kandt # K Thenr=x*and K =K.
We can unfold our hypothesis to get that (k — 1,0,0") € VT[K""] for some K"/, which implies v’ o o.
By the OS, either assert Kv — v and v « K, or assert K v — TypeErr(K, v) and —v « K.

In either case, we have the corresponding property needed to complete the case.
2024-03-08 17:45. Page 79 of 1-109.

80

[m}
LEMMA 8.16 (DYNaMmIc CHECKS ARE No-ops). If (k + 1, assert * v, assert * 0’) € ET[[z], then (k,0,0") € ET[7]
Proor. By the OS, assert * v —> v and assert * v/ — v’.
Then by our hypothesis, (k,v,0") € VT[r], which is sufficient to complete the proof. u]

LEMMA 8.17 (SUBTYPING COMPATIBILITY). (1) If (k,v1,02) € VT[[z] and v <: 7’ then (k,v1,02) € VT[]
2) If (k,e1,e2) € ET[[7] and r <: 7’ then (k, e, ez) € ET[[7'].

Proor. Proceed by mutual induction on k and 7:

o k =0:2isimmediate if e # v.
If e = v then 2 follows immediately from 1.
1 follows identically in the k = 0 case as it does in the k > 0 case, but the function case is vacuously true.
e k>0
(1) Case spliton 7 <: 7’:
i) 7 <! 7: immediate.
ii) Nat <: Int: immediate because T C Z.
iii) 71 X 72 < 7 X 17, with 71 <t 7] and 72 <0 7y
We want to show (k,v1,02) € (VT[[T']].
Unfolding our hypothesis, we get that o1 = (0], 0]") and similarly for ;.
We want to show (k,v],9}) € VT[[7]] and (k,0},v}) € VT[7].
We can apply IH 1) to both of judgements in our hypothesis to get (k,v],05) € (VT[[T{]] and
(kv v)) e VT[]
This is sufficient to show (k,v1,02) € VT [[7'].
iv) * = 2 <t x> 1, with o <o
We want to show (k,v1,02) € VT[7'].
Let j < k and (j,v7,v3) € VT +].
LetK.
We want to show (j, app{K} 01 0], app{K} vz 0}) € 8T|[Té nKj.
Then, we can apply our hypothesis about v1,v2 to get (j, app{K} v1 0], app{K} vz v7) € ET[nK].
Finally, we can apply IH 1) to get (j, app{K} v1 v],app{K} v2 v}) € ST[[ré M K] which is what we

wanted to show.

(2) Unfolding our hypothesis, there is some j < k and irreducible €], e; such that e; —>JT ej and ez —7 €.
If e}, e; € Err® then we’re done.
Otherwise, (k — j, e, e5) € VT[]
By IH 1), we have (k — j,], e}) € VT[], which is what we wanted to show.
o

LEMMA 8.18 (MONITOR COMPATIBILITY). If (k,0,0") € VT[], then (k + 1, mon {K] & K1}, mon{K; = Kz}v’) €
ET«].

Proor. By induction on k and v:
2024-03-08 17:45. Page 80 of 1-109.

Gradually Typed Languages Should Be Vigilant! 81

k =0 By case analysis on o, v’:
i, i’ By OS, mon{K] & K1} i — iand mon {K; < Kz} i’ — i’e, so this is immediate.
True, True Asin case i above.
False, False As in case True above.
(01,02), (v],05) Since (k,01,02) € VT[], by inspection T must be either 7; X7, or *:
11X72 Notethat mon {K] & K} (v1,02) — (mon {fst(K]) < fst(K1)} v1, mon {snd(K]) < snd(K1)} v2),
and similarly mon {K}, & Kz} (0], 05) — (mon {fst(K}) < fst(K2)} v}, mon {snd(K}) < snd(Kz)} v})

It is therefore sufficient to show that
(k, {mon {fst(K{) & fst(K1)} v1, mon {snd(Kl') & snd(Kp) } v2), (mon {fst(Ké) < fst(Ka2)} v{, mon {snd(Ké) < snd(Kz)} ué)) € (ST[[‘[1X1'2]]

By unfolding, this is the same as showing (k, mon {fst(K]) < fst(K1)} v1, mon {fst(K}) < fst(K2)} 0]) €
&T[r1] and (k, mon {snd(K]) < snd(K1)} vz, mon {snd(K}) < snd(K;)}v}) € ET[z,].
By Lemma 8.13, it suffices to show (k+1, mon {fst(K]) < fst(K1)} v1, mon {fst(K}) < fst(Kz)}v]) €
ET[[r1] and (k + 1, mon {snd(K]) < snd(K1)} vz, mon {snd(K}) < snd(Kz)} v}) € ET[[r2].
In both cases, IH applies and hence it suffices to show (k,v1,0]) € (ST[[Tl]] and (k, v2,0) € ST[[TZ]].
These are both obtained by unfolding our assumption.
% Impossible, since k = 0.
w, w’ Since (k,w, w’) € VT[z]], by inspection 7 must be either +— 7’ or *:
*— 7’ Note that mon {K] < K} w — grd {K] & K1} w,and similarly mon {K}, & K3} w’ — grd {K}, & Kz} w'.
Consequently, it is sufficient to show that (k, grd {K] < K1} w,grd {K, & Kz} w') € ETx—1'].
Consider arbitrary j < k, 0,0 s.t. (j,0,0") € (VT[[*]], K, K’. Then we must show that
(J,app{K} (grd {K] < K1} w) v,app{K’} (grd {K} & Kz} w') v’) € ET[Kn7].
By assumption, k = 0, so j = 0. Therefore, this is vacuously true.
* Impossible, since k = 0.
otherwise Impossible by Lemma 8.9.
k > 0 By case analysis on o, v’:
i,i’ Asink =0 case.
True, True Asin k = 0 case.
False, False Asin k = 0 case.
(v1,02), (U;, vé) Since (k,v1,02) € (VT[[T]], by inspection 7 must be either 71 X7 or *:
71 X7 Asink = 0 case.
* By unfolding, (k — 1, w,w’) € VT[+xx*]. By an argument essentially identical to the previous case,
merely reducing one application of monotonicity by one is sufficient to show what is needed.
w, w’ Since (k, w,w’) € VT[z], by inspection 7 must be either *— 7’ or *:
*— 1’ Note that mon {K] < K1} w — grd {K] < K1} w, and similarly mon {K}, & K2} w’ — grd {K < Kz} w'.
Consequently, it is sufficient to show that (k, grd {K] & K1} w,grd {K] & Kz} w') € ET[+—1].
Consider arbitrary j < k, 0,0” sit. (j,0,0") € VT[+], K, K’ st. K’ = K’ M 1’. Then we must show
that
(j»app{K} (grd {K{ & K1} w) v,app{K’} (grd {K} & Kz} w') o) € ET[K n'].
By OS, it suffices to show that
(j — 1,assertK ((grd {K] < K1} w) v),assert K’ ((grd {K, < Ka} w') v')) € ET[kn].
2024-03-08 17:45. Page 81 of 1-109.

82

By Lemma 8.15, it suffices to show that (j — 1, (grd {K] & K1} w) 0, (grd {K & Kz} w') 0) €
1.
By OS, it suffices to show that
(j = 2, mon {cod(K]) < cod(K1)} w mon {dom(K1) & dom(K])} v,
mon {cod(K}) & cod(Kz)} w" mon {dom(K3) < dom(K})}v’)
e&T].
By IH, it suffices to show that (j—3, w mon {dom(K;) < dom(K])} v, w’ mon {dom(Kz) < dom(K})}v’) €
T[]
By Lemma 8.16, it suffices to show that
(j = 2,assert * w mon {dom(K;) < dom(K])}v,assert * w’ mon{dom(K3) & dom(K})}v") €
sT[].
By the definition of meet and OS, this is equivalent to
(j—1,app{*} w mon {dom(K1) < dom(K])} v, app{*} w’ mon {dom(Kz) & dom(K;)}v’) € ET[+m
]
By unfolding the assumption that (k, w, w’) € ST[[* — 1], it suffices to show that
(j = 1,mon {dom(K;) & dom(K])} v, mon {dom(K3) & dom(K})}v’) € ET+].
By IH, it suffices to show that (j — 2,0,0") € ET[].
By Lemma 8.13, it suffices to show that (j,v,0) € E[+].
This is immediate from the assumption that (j,v,v") € VT [].
+ By unfolding, (k — 1, w,w’) € VT[[* —]. By an argument essentially identical to the previous case,
merely reducing one application of monotonicity by one is sufficient to show what is needed.

otherwise Impossible by Lemma 8.9.

COROLLARY 8.19. If (k,e1,ez) € ET[[r], then (k + 1, mon {K] < K1}, mon{K} & Kz} e2) € ET[[7].

J

Proor. Unfolding the expression relation in our hypothesis, we get that there is a j and e] such that e; —. e

such that e’ is irreducible, and an eé such that e —>’} eé and either they’re errors, or (k — j, e;, eé) c 'VTIIT]].

If they’re errors, then we’re done because the monitors will also step to errors.
]T mon {K] < K1} and mon {K; < K3} —>jT mon {K; & Ka}.
By Lemma 8.18, we have that (k — j,mon {K] < K}, mon{K; < Kz}) € 8T[[T]], which is sufficient to complete the

Otherwise, we have mon {K] < K;} —

proof. O

LEMMA 8.20 (BOUNDARY COMPATIBILITY). If (k,v1,02) € VT [z] and v’ = K{MKiNt=KjNKy Mz, then (k +
1,cast {K] < Ki} vy, cast {K), & Kp} v2) € sT(~].

Proor. By Lemma 8.10, notice that ot (| 7/]%, v1) ot ([7/]*, 02). By Lemma 8.11 and our assumption, therefore,
ot (K, o)A ot (Kq, o)A o« (|1]t, 01) oot (K3, v2)A ot (Kp, v2)A ot (|7]t, v2). By Lemma 8.10, oct
(Lz]t, 1) oot (L7t v2). Consequently, oct (K7, o1)A ot (Kq, v1) @t (Kb, v3)A «t (Kj, v3)—which is to
say, either both of the values match both of their annotated tags, or both of them do not match at least one of their
annotated tags.

Consider then each case:

2024-03-08 17:45. Page 82 of 1-109.

Gradually Typed Languages Should Be Vigilant! 83

Tags match By the operational semantics, it is sufficient to show that (k, mon {K] < Ki}v1, mon {K} < Kz} v2) €
T[]
By Lemma 8.18, it is sufficient to show that (k — 1,v1,0v2) € ST[[T’H.
By Lemma 8.12, it is sufficient to show that (k,v1,02) € 8T[[r]], which is our assumption.

Tags do not match Inspection of the operational semantics shows that both terms step to a boundary error, and so

are trivially in the relation.

O

LEMMA 8.21 (BOUNDARY COMPATIBILITY—OPEN RELATION). If[[T kypy €1 < €3 : r]]g. andt’ = K{NKiNr=K,NK;MNr,
then [T by cast {K] & K]} e1 < cast{K] & Kz} ep : ']

Proor. Consider arbitrary (k,y,y") € GT[T].

We must show that (k, y(cast {K] < K1} e1),y’(cast {K, & Kz} e2)) € sT'].

By the definition of substitution, it suffices to show that (k, cast {K] < K1} y(e1), cast {K} & Kz} y'(e2)) € sT(].

Instantiate the hypothesis with (k, y, y’), providing that (k, y(e1), y’ (e2)) € ET[z].

Then Lemma 8.14 applies. Consider arbitrary (k’,v1,v2) s.t. (k’,v1,02) € (VT|[T]]; we must show that (k’, cast {K{ =
K1} o1, cast{K) < Kp} v2) € ET|z]. This is immediate by Lemma 8.20 and Lemma 8.13. O

LEMMA 8.22 (APPLICATION COMPATIBILITY). If (k, vy, v}) € VI[+—] and (k,v4,0,) € VT[] and’ =Ky =
K’ N1y, then (k,app{K} vy vq, app{K’} u} o) e ET[7]

Proor. Unfolding the V relation on our first assumption and instantiating with j = k, 0] = v4, v) = v, K = K,

K’ = K’ gives precisely what is to be shown. m]

LEMMA 8.23 (APPLICATION COMPATIBILITY—OPEN RELATION). If[[T Fry efr Sepp a0 rz]]g andt’ = KiM1y = KoMty

and [T Fery eq1 < eg2 Tl]]g: then [T vty app{K1} €f1 €a1 < app{Kz} €f2 €a2 : T/]]g

Proor. Consider arbitrary (k,y,y") € GT[T].

We must show that (k, y(app{K1} ef1 ea1), v (app{Kz} ef3 €a2)) € sT['].

By the definition of substitution, it suffices to show that (k,app{Ki}y(er1) y(ea1),app{Kz} y'(efz) Y (eq2)) €
ET[7'].

Instantiate the first hypothesis with (k,y, y’), providing (k, y(ef1), ' (ef2)) € ET[[* — 12]. Similarly, the second
provides (k, y(ear), V' (a2)) € & [1].

Then Lemma 8.14 applies. Consider arbitrary (k’,of1,0f5) € YT+ — 1] with K < k. Then by Lemma 8.13,
(K',y(eq1), v (eq2)) € 8T|[Tl]], Lemma 8.14 again applies. Consider arbitrary (k”’,va1, 042 € ‘VT|[1'1]] with k” < k’. We
must show that (k”’, app{Ki1} vy va1,app{Kz} vf3 vaz) € ET[[7']; this is immmediate by Lemma 8.22. O

LEMMA 8.24 (APPLICATION COMPATIBILITY—-FUNCTION IS BOTTOM). If [T Fry ef1 S efy ¢ J_]]g then [T Fery

app{Ki} e ea1 < app{Ka} ef eqz : L] L.

Proor. Consider arbitrary (k,y,y’) € GT[T].

We must show that (k,y(app{Ki} ef1 ea1), v’ (app{Kz} €3 €q2)) € ET['].

By the definition of substitution, it suffices to show that (k,app{Ki}y(ef1) y(ea1), app{K2} y'(efg) Y (eq2)) €
gT'].

Instantiate the first hypothesis with (k, y,y’), providing (k, y(ef1). v’ (ef2)) € ET[1].
2024-03-08 17:45. Page 83 of 1-109.

84

Then Lemma 8.14 applies. Consider arbitrary (k',vr1,v5;) € YT L] with kK’ < k. By unfolding of V no such values

can exist, so we are done.]

LEMMA 8.25 (FsT coMPATIBILITY). If (k,0,0") € VT [rx12] andt’ = KMty = K’ M1y, then (k, fst{K} v, fst{K’} v") €
sT'].

Proor. Unfolding the definition of V tells us that there must be some v1,02,0],0} s.t. v = (v1,02), 0" = (v],03),
(k,v1,0]) € VT[1], and (k,v2,0}) € VT[[2]. We must show that (k, fst{K} (v1,v2), fst{K"} (v}, 05)) € ET['].

By the OS, it suffices to show that (k — 1, assert K vy, assert K’ 0]) € T[]

By Lemma 8.15, it suffices to show that (k — 1,01,07) € ET[[r1]. This is immediate by Lemma 8.13. u]

LEMMA 8.26 (FST COMPATIBILITY—OPEN RELATION). If [T kiy e <€’ : 1y XTz]]g andt = KN =K' N1y, then
[T Feru fst{K} e < fst{K'} ¢’ : 7] L.

Proor. Consider arbitrary (k,y,y’) € GT[T].

We must show that (k, y(fst{K} e),y’ (fst{K’} ¢’)) € ET[’].

By the definition of substitution, it suffices to show that (k, fst{K} y(e), fst{K'} y’(¢’)) € ET[7'].

Instantiate the hypothesis with (k, y, y’), providing (k,y(e),y’ (")) € ET[r1 xn].

Then Lemma 8.14 applies. Consider arbitrary (k’,0,0”) € VT [r1xz;]]. We must show that (k’, fst{K} o, fst{K’} v’) €

ET[7']; this is immediate by Lemma 8.25. m]
LEMMA 8.27 (FST COMPATIBILITY—PAIR IS BOTTOM). If [T Firy €1 < €2 : J_]]g then [T Fiey fst{K1} e1 < fst{Kz} ez :
T

Lo
Proor. By the same reasoning as Lemma 8.24. m]

LEMMA 8.28 (SND COMPATIBILITY).

Proor. Nearly identical to that of Lemma 8.25. O

IA
Q

LEMMA 8.29 (FST COMPATIBILITY—OPEN RELATION). If [T ki e
[T Fer snd{K} e < snd{K’} ¢’ : 7] .

i XTZ]]E and = KNt = K’ N1y, then

Proor. Nearly identical to that of Lemma 8.26, using Lemma 8.28. O

LEMMA 8.30 (SND COMPATIBILITY—PAIR IS BOTTOM). If[[T Firy €1 < €3 : J_]]g then [T Firy snd{K1}e; < snd{Kz} ey :
L)L
PRroOF. By the same reasoning as Lemma 8.24. m]

8.4.3 Binary relation: Compatibility Lemmata

(x:K)eTl

LEMMA 8.31 (T-VAR COMPATIBILITY).
[T ey x < x:K]]g
Proor. Consider arbitrary (k,y,y’) € GL[T].
We must show that (k,y(x),y’(x)) € E£[K].
Since x : K € T, we know that there exist some values v,v” s.t. y(x) = v and y’(x) = v’. Since (k,y,y’) € QL[[F]], we
know that (k,0,0") € VL[K]. Then we get (k,v,0") € EL[I'] immediately since v, v’ are already values. u]
2024-03-08 17:45. Page 84 of 1-109.

Gradually Typed Languages Should Be Vigilant!

LEMMA 8.32 (T-NAT COMPATIBILITY).

[Tryun<n: Nat]]é

Proor. Consider arbitrary (k,y,y") € GL[T].

We must show (k, y(n),y’(n)) € E£[Nat].

Note that y(n) = n.

Since n is already a value, it suffices to show that (k, n, n) € VL[Nat].
Unfolding the definition of V<[Nat], this is true.

LEMMA 8.33 (T-INT COMPATIBILITY).
[T by i< iz Int] %

Proor. Consider arbitrary (k,y,y’) € G£[T].

We must show (k,y(i),y’(i)) € E£[Nat].

Note that y(i) = i.

Since i is already a value, it suffices to show that (k, i,i) € VL[[Int]].

Unfolding the definition of V<[Nat], this is true.

LEMMA 8.34 (T-TRUE COMPATIBILITY).

[To Ftry True < True: Bool]]CL,

ProoF. Consider arbitrary (k,y,y’) € G£[T].

We must show (k, y(True),y’ (True)) € E£[Bool].

Note that y(True) = True.

Since True is already a value, it suffices to show that (k, True, True) € ’VL|[Boo|]].
Unfolding the definition of V<[Bool], this is true.

LEMMA 8.35 (T-FALSE COMPATIBILITY).
[To ru False < False : Bool]]é

Proor. Consider arbitrary (k,y,y") € GL[T].

We must show (k, y(False), y’ (False)) € 8£[Bool].

Note that y(False) = False.

Since False is already a value, it suffices to show that (k, False, False) € V<[Bool].

Unfolding the definition of V<[Bool], this is true.

|[F0, (x0:Kp) Ftru €0 < 66 : Tl]]é
LEMMA 8.36 (T-LAM COMPATIBILITY).

[[ro Ftru /I(X():Ko).eo < A(X():K()).e(/) : *—)Tl]]é:

Proor. Let (k,y.y") € GT[o].
We want to show (k, y(Axo : Ko. eo), y" (Axo. Koep)) € ET[* —»]
Note that y(Axo : Ko. e9) = Axo : Ko. y(eo) and similarly for the other.
We want to show (k — 1, Axo : Ko. y(eo), Axo : Ko. y(eg)) € VT - n].
Unfolding the value relation:
Let j < k.
Let (j,0,0") € VT[+].
Let K.
2024-03-08 17:45. Page 85 of 1-109.

86

We want to show (j, app{K} (Axo : Ko. y(eo)) v, app{K} (Axo : Ko. y(e})) ') € ET [nK].

By the OS, if =K o v then the application steps to an error and we’re done.

Otherwise, app{K} (Axo : Ko.y(ep)) v —> T assert K ((Axo : Ko.y(ep)) v) — assert K y(eo)[v/x].

By the definition of substitution, y(eg)[v/x] = y[x + v](eg).

Note that (j - 2,y[x = 0] (ep), v’ [x > 0] (ep)) € GT[T,x : K] by Lemma 6.15 and Lemma 6.17.

Therefore, we can apply the hypothesis to y[x + o], y’[x + ©"], and e, e at j — 2 to get (j — 2,y [x +> 0] (ep), v’ [x >
o']eq) € ET[=].

Finally, we can apply Lemma 6.18 to get (j — 1,assert K y[x > v](ep), assert Ky’ [x > 0] (ey)) € &1 M K] which

is what we wanted to show. O

[T reruer <ep: 1'1]]£
[T Feruer <ep: Tz]]g

LEMMA 8.37 (T-PAIR COMPATIBILITY).
[T Feru Cer,e2) < (€] ep) s Tixr2] &

Proor. Consider arbitrary (k,y,y) € GT[T].

We must show (k, y({e1, e2)), v’ ({e], e5))) € ET[rix12].

Note that y({e1, e2)) = (y(e1), y(e2)), and similarly for y’,], e7. We want to show that (k, (y(e1), y(e2)), (v’ (e]), v’ (e3))) €
ET[r1x2].

Notice that by instantiating our hypothesis with (k, y, y"), we know that (k, y(e1), Y’ (e])) € ET[r1] and (k, y(e2), vy’ (e3)) €
EM[z].

By Lemma 8.14, it suffices to show that for any (k’,v1,7) € (VT[[Tl]] where k’ < k, (K', (v1, e2), (v}, €5)) € ST[[T1><TZ]].

By Lemma 8.13, we know that (k’, y(e2),y’(e3)) € 8T|[T2]]. Again by Lemma 8.14, therefore, it suffices to show that
for any k"' < k" and v3,0), s.t. (k”,v2,07) € VT[], (K", (v1,02), (0], 0})) € ET[r1 xtaus].

Since these terms are values, it suffices to show that (k”’, (v1,v2), {0, 05)) € VT [r1x12].

Unfolding the definition of V, it suffices to show that (k/, vy, Ui) € (VT[[‘rl]] and (k”’, s, vé) € (VT[[TZJ]; both of

these are immediate by Lemma 8.13 from our assumptions. O

[[1“0 Feru €0 < e(') : TO]]Z

LEMMA 8.38 (T-CAST COMPATIBILITY).
|[F0 Ftry Cast {Kl &= K()} ey < cast {K1 &= Ko} 66 K1 M Kon TO]]E'

Proor. Follows immediately from Lemma 8.21. O

[To Feru eo <€ : *—>f1]]£
[To Feruer < e : Té]]g

[To Feru app{Ki}eo e1 < app{Ki}e) €1 : Ki M n]]Z

LEMMA 8.39 (T-APP COMPATIBILITY).

Proor. Follows immediately from Lemma 8.23. O
IIF(] Ftru €0 < 86 : J_]]g
[To Feru e1 < €] : Té]]g

[To Feru app{K1} €0 e1 < app{Ki} e ¢} : L] L

LEMMA 8.40 (T-APPBOT COMPATIBILITY).

Proor. Consider arbitrary (k,y,y) € GT[T].
We must show (k, y(app{K1} e 1),y (app{K1} €} €])) € &T1].

Apply the first hypothesis to get (k, y(eq),y’(e))) € T[]
2024-03-08 17:45. Page 86 of 1-109.

Gradually Typed Languages Should Be Vigilant! 87

Unfolding, there exists some j < k, ey, e3 such that y(eo) —>jT ep and y’(e(’)) —>]T e3 where ey and e3 are irreducible.
Either e; = e3 € Err®, or (j, e2,e3) € (VT[[J_]].
J

By inversion, it must be the case that ez = e3 € Err®, which means that by the OS, y(app{Ki} eo e1 —>T+1 ey and
j+1

Y/ (app{Ki}) ef) —% es.

Then either, j + 1 > k, in which case we’re done, and otherwise both applications step to the same error within k

steps, in which case we’re done. O

e1.

T
[To Feru €0 < ey : ToxT1]I

LEMMA 8.41 (T-FST COMPATIBILITY). T
[To Fru fst{Ko} eo < fst{Ko} 66 KoM To]]c

Proor. Consider arbitrary (k,y,y) € GT[T].

We must show (k, y(fst{Ko} eo).y’ (fst{K1} €})) € ET[Ko M ro].

Note that y(fst{Ko} eo) = fst{Ko} y(ep) and similarly for e{.

Assume that there are j < k, e1 such that fst{K} ey —>JT e1 and eq is irreducible.

By the OS, it must be the case that there are irreducible e], e’ such that fst{Ko } eo —J 72 fst{Kp} e; — assert Ko e’ —

Unfolding our hypothesis and applying it to the reduction ey —/~2 e, we get that there is an irreducible e} such

that e(') —* e:’z and (k—j+2, ei,eé) € (VT[[T()XT]]].

T
Unfolding the value relation, we get that both ¢] and e are pairs.

Therefore, we have by the OS that there exists e}, ez such that fst{Kp} e} —>; fst{Ko} e; —T assert Ko ey’ —r e2.
Unfolding the fact that (k — j +2,¢],e)) € VT [zox7] gives us that (k — j +2, e e)) € VT [].
Finally, by Lemma 8.15, we get that (k — j + 2, assert K ei’, assert Ko eé’) c ST[[TO M Ko, which is sufficient to

complete the proof. O

[To Feru eo < € : J_]]g

LEMMA 8.42 (T-FSTBOT COMPATIBILITY). T
[[r() Feru Tst{Ko} eg < fst{Ko} e(’) : L]]C

ProoF. Similar reasoning to T-AppBOT. O

’ T
[To Ftru €0 < €y : Tox71]~

|[T0 Ftru snd{K1}60 < snd{Kl}eé K1 n Tl]]g

LEMMA 8.43 (T-SND COMPATIBILITY).

Proor. Almost identical to T-FsT. O

[To Feru eo <€ : J_]]Z

LEMMA 8.44 (T-SNDBOT COMPATIBILITY). - -
[To Feru snd{K1} eg < snd{Ki}e; : J_]]C

Proor. Similar reasoning to T-AppBoOT. O

A

[To Fru €0 < e(') : TO]]E
[To Feru €1 < €] :rl]]g

LEMMA 8.45 (T-BINOP COMPATIBILITY).
[To Fru binopeger < binope(') e{ : A(binop, 1o, 71)]]£

Proor. Let (k,y,y") € GT[T].

We want to show (k, y(binopeg e1),y(binopegey)) € ET[A(binopro, 1)].

. _ . . 3 ’ 7
Note y(binopeg e1) = binopy(eo) y(e1), and similarly for e, e.
2024-03-08 17:45. Page 87 of 1-109.

88

By the first hypothesis applied to y, y” we have (k, y(eo),y’ (e})) € EMw].
J

Unfolding we get there is a j < k, and irreducible ey, e} such that y(eo) —7

ez and y’(e)) —7 ej.
Ifeg = eé = Err® then we're done, because the whole operation errors.

Otherwise (k — j, e2,€5) € VT[]

Note by Lemma 8.13 (k — j,y,y") € GT[T1].

By the second hypothesis applied to y, y’ and k — j, we have (k — j,)/(61‘/), Y (e]) € ET =],
Unfolding we get there are j/, and irreducible e3, e such that y(e;) —>JT e3 and y'(e]) —7 e
Ifes = eé = Err® then we're done, because the whole operation errors.

Otherwise (k — j — j’, e3,¢5) € VT [n].

From the definition of A, K5 = Int or Nat or L.
In the case of L, we’re done because either g or 71 is a L, which is a contradiction.
Otherwise, the cases proceed identically, so without loss of generality assume K3 = Int.
70 = 11 = Int, and therefore ez = e} = ip and e3 = eé =ij.
If binop = quotient and i; = 0 then binop iy iy —> 1 DivErr, so we’re done.
If binop = quotient and i; # 0, then binopip iy — T (io/i1).
Since ig/i; € Z, we’re done.
If binop = sum then binop i iy —T io + i1.
Since iy + i1 € Z, we're done. O
[To Feru €0 < e(l) : BOO|]]£
[To Feruer <ef : T()]]g

T
[To Feru ez < ef: 1]l
LEMMA 8.46 (T-IF COMPATIBILITY).

[To Feru if e then e; else ez < if e then e] else €5 : 7o LI rl]]g

Proor. Let (k,y,1") € GT[T].
We want to show (k, y(if e then e; else e), y’ (if ¢] then e] else e})) € EM[rou].
Note y(if eo then e; else ez) = if y(ep) then y(er) else y(ez) and similarly for e, e], e2.
From the first hypothesis applied to y, y’, we know (k, y(eo), y’ (e))) € ET[Bool].

Unfolding, we have that there is a j < k and irreducible eq4, e[’1 such that ey —7

T e

’ ’
eg and ej —7 €.

X
T
If e4, e; € Err® then we're done, because the entire if statement errors.

Otherwise, (k — j, eq, €;) € VT Bool].

Unfolding the location and then the value relation, we get that e4 = e; =Trueoreq = ef} = False.

® ¢4 = ¢; = True: Note by OS, if y(ep) then y(er) else y(e2) —>JT if e4 then y(eq) else y(e2) — T y(e1), and
similarly for if y’(e;) then y’(e]) else y(ej).
By Lemma 8.13, we have (k — j — 1,y,y’) € QT[[H]].
From the second hypothesis, we get (k — j — 1,y(e1),y’(e])) € &[]
Finally, by Lemma 6.21, we get (k — j —1,y(e1),y"(e})) € ET[[7o U 7] which is sufficient to complete the proof.
e ¢4 = e"1 = False: same as other case except replace e; with ej.
2024-03-08 17:45. Page 88 of 1-109.

Gradually Typed Languages Should Be Vigilant! 89

[m}
[To Feru eo < ef : J—]]g‘
|[F0 Ftru €1 < e; : To]lg
[To Feru €2 < €5 : rl]]g
LEMMA 8.47 (T-IFBOT COMPATIBILITY).
[To Feru if € then e; else ey < if €] then e] else e : J_]]g
Proor. Similar reasoning to T-AppBoOT. O
[To Ferueo < e : ro]]g
Ty ST
LEMMA 8.48 (T-SUB COMPATIBILITY). T
’
[To Feru eo < g : 1]
Proor. Follows directly from Lemma 8.17. O
8.4.4 Binary relation: Fundamental Property
THEOREM 8.49 (BINARY RELATION IS REFLEXIVE). IfT by e: 7 then [T by e~ e T]]g
Proor. By induction over the typing derivation, using the compatibility lemmata. O

8.5 Context relation—Proofs
8.5.1 Context relation: Compatibility Lemmata
I'cr

[T b [T %[5 (T > 7) w2

LEmMA 8.50 (T-CTx-HOLE COMPATIBILITY).

Proor. Lete, e’ such that [T/ ke € @ 7).

We want to show [T key e @€’ : 7.

Note Y(k,y,y") € GT[T1, (k. ¥ldom(r)» ¥ ldom(rry) € GTIT”].

And note y(e) = y|gom(r) (¢) and similarly for e’.

Then given such k, y,y’, we can apply the hypothesis to get that (k,y(e),y’(¢’)) € ET[[r], which is sufficient to

complete the proof. O
[T, (x:K) bera E~ E' (T, (x:K) > 1)~ 7] &
LEmMA 8.51 (T-CTX-LAM COMPATIBILITY).
[T Fery A(x:K).E = A(x:K).E" : (T', (x:K) > 1) ~> *—>T,]]£
Proor. Lete, e’ such that [T/, (x:K) ey e € 2 7]
We want to show [T kery A(x:K). e ~ A(x:K). e’ : % — ']
From our hypothesis we get [I”, (x:K) ey E[e] = E[€'] : 7]
Then the case follows from Lemma 8.36. O

[T rpy E~ E: (I"l>r)'w>rl]]g [T rery e~ e :‘[2]]2

LEMMA 8.52 (T-CTX-PAIR-1 COMPATIBILITY). T
[T Fru (Ece) ~ (E',e') s (I 5 1) o 1y] -

PRrOOF. Let e, e’ such that [T’ by 1 = €] = 7].
2024-03-08 17:45. Page 89 of 1-109.

90

We want to show [T kg (E[e1],e) = (E’'[e]],€) : 11 X 2]
From our first hypothesis, we have [T y Eler] = E'[e]] : 7]

Then the case follows by Lemma 8.37.

[Tryuexe :Tl]]g [T trew E~E - (1"'>r)w>r2]]£

LEMMA 8.53 (T-CTX-PAIR-2 COMPATIBILITY).
[T Feru e, E) = (€ E') : (I > 1) wo iy x| &

ProoF. Analagous to T-CTx-PAIR-1.

[T reew E~ E :(1"'t>r)«~>*—>rl]]£ [T Fery eze':fz]]g
LEmMA 8.54 (T-CTX-APP-1 COMPATIBILITY).

Ftru apP e~ app e (I'>pr)wKNn
r K}E K}E ¢ : (I Kno]k

PRrOOF. Let e, e’ such that [T’ ki €1 = €] : % — 71].

We want to show [T ktry app{K} E[e1] e = app{K} E’[e]] ¢’ : K 71].
By the first hypothesis, we have [Tk, E[e1] = E'[e]] : — 1]
Then the case follows by Lemma 8.22.

[T Few Ex E : (I b 1)~ L]|L [Trwe~e :n]k
LEMMA 8.55 (T-CTx-APPBOT-1 COMPATIBILITY). " ¢ “ ¢

[T ey app{K}Ee ~ app{K}E ¢’ : (T' > 1) ~» J_]]g
PrRoOOF. Analogous to T-CTx-App-1.

[T reuexe :*—)Tl]]g [T l—tmEzE':(F'l>r)WTz]]£
LEmMMA 8.56 (T-CTX-APP-2 COMPATIBILITY).

[T Firy app{K} e E ~ app{K}e' E' : (I"> 1) ~ K1 rl]]g
ProoF. Analogous to T-CTx-App-1.

[T reyex~e: J_]]g [Tryy EXE : (I">1) »> Tz]]g

LEmMmA 8.57 (T-CTx-APPBOT-2 COMPATIBILITY). T
[T Feru app{K} e E ~ app{K} e’ E' : (I > 7) ~> L] T

Proor. Analogous to T-CTx-App-1.

[T ey E~E 2 (Do 1) w1y x72]
LEmMA 8.58 (T-CTX-FST COMPATIBILITY).

[T tery fst{K}E ~ fst{K} E’ : (T > 7) ~> KMy] L

Proor. Lete, e’ such that [T Fyy e m e’ 171y X 2]

We want to show [T iy fst{K} E[e] ~ fst{K} E'[¢’] : KM 71].
By the hypothesis, we get [T iy Ee] = E'[e'] : 11 X 12].
Then the case follows by Lemma 8.25.

[Tryw ExXE :(Tr1) WJ_]]E
LEmMMA 8.59 (T-CTX-FSTBOT COMPATIBILITY).

[T teru fS{K}E ~ fst{K} E’ : (T> 1) ~> L] &
Proor. Analagous to T-Ctx-FsT.

[Tryy EXE :(Tr1) > T]X‘[g]]g
LEmMA 8.60 (T-CTX-SND COMPATIBILITY).

[T Fery snd{K}E ~ snd{K} E" : (T[> 7) ~ K M 73] L

Proor. Analagous to T-Ctx-FsT.

]

2024-03-08 17:45. Page 90 of 1-109.

Gradually Typed Languages Should Be Vigilant! 91

[T ey EXE = (Do) > L)L
LeEMMA 8.61 (T-CTX-SNDBOT COMPATIBILITY).

[T +ery snd{K}E ~ snd{K} E" : (T[> 7) ~> L] L
ProoF. Analagous to T-Ctx-FsT. O

[Tryuw E~E : (rl>T)’VV>T1]]£ [T Fry e~ e :rz]]g
LEmMMA 8.62 (T-CTX-BINOP-1 COMPATIBILITY).

[T Fery binopEe = binopE’ €’ : (T » 1) ~w» A(binop, 71, Tg)]]g

PROOF. Let ey, €] such that [T riny e =] : 7]
We want to show [T ke binopEler] e = binopE'[e]] e’ : A(binop, 71, 72)]|
By the first hypothesis, [T ko E[e1] ~ E'[ef] : 71].

Then the case follows by Lemma 8.45.

[T Hrueze,:fl]]g [t Feru E ~ E :(F'>T)"’V’T2]]g
LEMMA 8.63 (T-CTX-BINOP-2 COMPATIBILITY).

[T Feru binopEe = binopE’ €’ : (T » 1) ~» A(binop, 71, Tz)]]g
Proor. Analagous to T-Ctx-BiNop-1. O

[Tryu EXE :(Tr1) v ‘[I]lg

LEMMA 8.64 (T-CTX-BND-1 COMPATIBILITY).
[T tery cast{K, & K1} E ~ cast{Kp = Ki} E' - (T» 1) w Ky MKy M7/ |5

Proor. [m]

[Tryw EXE : (To1) s Bool]]g [T Feru er = e rl]]g [T Feru e2 > €5 : Tz]]z;

LEMMA 8.65 (T-CTX-IF-1 COMPATIBILITY).
[T Firy if E then e; else ez ~ if E” then e] else €5 : (T>7) ~> 7y U Tz]]g

PROOF. Let e, ¢) such that [T iy e = ¢ : 7]

We want to show [T kiry if E[eg] then eg else ez ~ if E'[e]] then e else e} : 7 U z2].

By the first hypothesis, [T iy E[eo] = E"[eg] : Bool].

The case follows by Lemma 8.46. O

[Tryu EXE : (To1)w> J_]]z; [T Feruer = €7 : rl]]g [T Feru ez = ey Tz]]g
LEMMA 8.66 (T-CTx-IFBOT-1 COMPATIBILITY).

[T Fery if E then e; else e & if E' then e] else e} : (T'>7) w> J_]]g
PRrROOF. Analagous to T-Ctx-IF-1 O

[T Feru ep ~ e, Bool]]g [Trw EXE :(Tr1) ™ 7.'1]]2; [T Feru ez > e : Tz]]g

LEMMA 8.67 (T-CTX-IF-2 COMPATIBILITY).
[T Feru if ep then E else ep ~ if e; then E" else €} : (I'>7) ~> 71 U rz]]g

Proor. Analagous to T-Ctx-IF-1 O

[T Firy e ~ eé : L]]g [Tryy EXE : (To1) > 71]]2 [T Feru ez~ ey Tg]]g

LEMMA 8.68 ([-CTX-IFBOT-2 COMPATIBILIT Y).
Ftr IT e tenEeseezzl eltenE elsee, : (I'>7) > L

PrRoOOF. Analagous to T-Ctx-IF-1 O

[T Feru ep = e,') : Bool]]g [T Feru ex = €7 : Tl]]g [Trew EXE : (Tr1) > Tz]]g

LEMMA 8.69 (T-CTX-IF-3 COMPATIBILITY).
[T tiry if ep then eq else E ~ if e; then ei else ' : (T»17) ~s 11 U Tz]]g

2024-03-08 17:45. Page 91 of 1-109.

92

ProoF. Analagous to T-CTx-IF-1 O

[T tiry e ~ e,') : J_]]g [T Feru ex = e : Tl]]g [Tryu EXE : (To1) > Tz]]g
LEmMMA 8.70 (T-CTX-IFBOT-3 COMPATIBILITY).

[T Feru if €p then e; else E ~ if e, then ¢ else E’ : (T'> 7) L]]g

Proor. Analagous to T-Ctx-IF-1 O

8.5.2 Context relation: Fundamental Property

THEOREM 8.71 (CONTEXT RELATION IS REFLEXIVE). IfT tpy C: (IV>7) w7/, then [T by C = C 2 (I by 7) w 7.

Proor. By induction over the typing derivation, using the compatibility lemmata. O

8.6 Check optimization

* ifr <K
K\t=
K otherwise

2024-03-08 17:45. Page 92 of 1-109.

Gradually Typed Languages Should Be Vigilant! 93

I’ Ftry € : T w> e | optimization

TVan TN TI TT
“NAT “INT “TRUE
(x0:Ko) € Ty
To Feru X0 @ Ko ™ xg Ty Feru no : Nat ~» ng To Feru Qo : Int ~s 0 Iy Ftry True : Bool »» True
T-PAaIr
7
TF T-Lam To Feru €0 : To ™~ €
“FALSE
Lo, (x0:Ko) Feru €0 : T1 ™ €] Lo Feru €11 T1 ™ €]
To Ftru False : Bool ~» False T Ftru A(XO:Ko).eo LRkT] W A(XO:Ko).eé To Feru <80, 81> CTOXT] W <66, e{)
T-CastT
To Ftru €0 : T ™ 66
T Ftru cast {K; & Ko} e : K1 M Ko M1~ cast {Kq \ (Ko M19) < Ko \ 70} ¢
T-Arp T-AppBoT
o Ftru €0 1 % — 71w € To Ftru €0 : L~ €]
Lo Ftru €1 : Tp ~ €] Lo Ftru €1 : Tp > €]
’ ’ ’ ’
Io Feru app{Ki}ep €1 : K1 M7y~ app{Ki \ 71} ¢; €] To Ftru app{K1} e €1 : L~ app{Ki \ L} ¢; e;
T-FsT T-FstBot
To Firu €0 : ToXT1 ™ e(') To Feru €0 1 L m e(')
’ 7
To Feru fst{Ko} e : Ko M 9 ~> app{Ko \ 70} [Ty Feru fst{Ko} e : L~ fst{Kp \ L} €
T-SnD T-SnpBoT
Lo Feru €0 1 TOXT1 ™ € Lo Feru €0 1 L~ €
7’ ’
To Ftru sNd{K1} e : K1 M 71 v snd{K7 \ 71} ¢ To Feru sNd{K1} eg : L > snd{Kj \ L} e
T-Ir
7’
T-Binop To Ftru €0 : Bool w ¢
To Ftru €0 : 70 ™ 66 To by €1 : 79 e{
To Feru €1 : 71w e{ Io Ftru €2 : 71 W eé
T +tru binopeg eq : A(binop, 79, 71) ~> binope]] T Feru if €9 then e else ep : 7o Li 7y w> if €] then e] else e
T-IrBot
To Feru €0 0 L~ g T-Sus
To Ftru €1 : 79 ™ e; To Ftru €0 : To ™ 66
To Feru €2 : 71 W eé) $° T
I Firu if €o then e; else ey : L~ if ¢f then e] else ¢} T Ftru €0 1 T1 ™ €]

ctx e’

THEOREM 8.72 (CHECK-ELISION CORRECTNESS). IfT kiry €: 7w €/, thenT by e = 1T

Proor. Consider arbitrary T, e, 7,e” s.t. T Fyy € 0 7w €. By Lemma 8.92, [T Fypy € ~ € - T]]g By Theorem 8.3,

T Fery € =% ¢’ ¢ 7, which is what was to be shown. O

2024-03-08 17:45. Page 93 of 1-109.

94

8.7 Check-elision—Proofs

LEMMA 8.73 (K \ 7 PRESERVES MEETS). KM 7= (K\7)Mr.

Proor. Immediate by unfolding and lattice properties. O

8.7.1 Check-elision: Compatibility Lemmata

(x0:Ko) € Ty
LEmMMA 8.74 (T-VAR COMPATIBILITY).

[To Feru x0 = x0 3KO]]£

Proor. By unfolding and Lemma 8.31. O

LEMMA 8.75 (T-NAT COMPATIBILITY).
|[1"0 Ftru Mo = No : Nat]]g

Proor. By unfolding and Lemma 8.32. O

LEMMA 8.76 (T-INT COMPATIBILITY).
[[FO Feeu lo ~ Do : Int]]g

Proor. By unfolding and Lemma 8.32. O

LEmMMA 8.77 (T-TRUE COMPATIBILITY).

[To Ftry True ~ True: Bool]]g

Proor. By unfolding and Lemma 8.34. O

LEMMA 8.78 (T-FALSE COMPATIBILITY).
[To Fru False ~ False : Bool]]g

Proor. By unfolding and Lemma 8.35. O

[To, (x0:Ko) Feru €0 ~ € : 1] &

LEMMA 8.79 (T-LAM COMPATIBILITY). -
[To Feru A(x0:Ko). €0 = A(x0:Kop). ey : =11]

Proor. By unfolding and Lemma 8.36. O

€ ro]]g
e{ : Tl]]g

Q

[[FO Ftru €0
[[FO Ftru €1

Q

LEMMA 8.80 (T-PAIR COMPATIBILITY). -
’
IIFO Ftru €0, €1) = <86, e]) : TOXTI]]C

Proor. By unfolding and Lemma 8.37. O

[IF Ftru €1 ~ €3 : r]]g

LEMMA 8.81 (T-CAST COMPATIBILITY).
[T bery cast {K’ &= K} ey ~cast{K'\ (KMN7) =K\t}ex: K’ MK f]]g

Proor. Follows immediately from lattice properties and Lemma 8.21. O
[To Feru €0 ~ € : x> 11]| &

’ T
[To Ftru €1 = €] : o]l
LEMMA 8.82 (T-APP COMPATIBILITY).

[To Feru app{Ki} eo e1 ~ app{Ki \ 71} ¢} €] : K1 My | &
2024-03-08 17:45. Page 94 of 1-109.

Gradually Typed Languages Should Be Vigilant! 95

Proor. Follows immediately from lattice properties and Lemma 8.23. O

[To Feru eo ~ €5 : J_]]g

[To Feru e1 = €1 : ré]]g

LEMMA 8.83 (T-APPBOT COMPATIBILITY). — -
[To Feru app{Ki} o e1 ~ app{K1 \ L} ¢} €1 : L]~

Proor. Follows immediately from Lemma 8.24. O
[To Feru €0 = € : To)(‘l']]]g

[To Feru fst{Ko} eo ~ fst{Ko \ 70} €; : Ko I To]]g

LEMMA 8.84 (T-FST COMPATIBILITY).

Proor. Follows immediately from lattice properties and Lemma 8.26. O
[To Feru €0 = € J_]]g

LeEmMA 8.85 (T-FSTBOT COMPATIBILITY). -
[[ro Feru Tst{Ko} eo ~ fst{Ko \ L} 66 : J_]]C

Proor. Follows immediately from Lemma 8.27. O

’ T
[[ro Ftru €0 € : T0XT1]]C
LEMMA 8.86 (T-SND COMPATIBILITY).

|[F0 Ftru snd{Kl} ey ~ snd{K1 \Tl} 66 KM Tl]]g
Proor. Follows immediately from lattice properties and Lemma 8.29. O
[To Fru €0 ~ € : J_]]g

[To Feru sNd{K1} eo ~ snd{Ky \ L}e): L]L

LEMMA 8.87 (T-SNDBOT COMPATIBILITY).

Proor. Follows immediately from Lemma 8.30. O

[To Feru €0 = € : To]]g
[[r() Ftru €1 = ei :Tl]]g

LEMMA 8.88 (T-BINOP COMPATIBILITY).
[To Ftru binopeg e1 = binope; e} : A(binop, 1o, rl)]]g

Proor. By unfolding and Lemma 8.45. m]
[To Feru €0 = € Bool]]g
[To Feru e1 ~ €] : 0] &
[To Feru e2 ~ €y 1] &

LEMMA 8.89 (T-IF COMPATIBILITY).
[To Feru if e then e; else ez ~ if ef then e] else e : 7o LI rﬂ]é

Proor. By unfolding and Lemma 8.46. O
[To Feru €0 = € : J_]]g
[To Fru €1 ~ €] :To]]g

[[1“0 Ftru €2 = eé 5T1]]£
LEMMA 8.90 (T-IFBOT COMPATIBILITY).

[To Fru if € then eq else ez = if €] then e] else e : J_]]g
Proor. By unfolding and Lemma 8.47. O

[To Feru €0 = € T()]]E

T0 $°T1
LEMMA 8.91 (T-SUB COMPATIBILITY).

’ T
[[Fo Ftru €0 & eo : Tl]]C
Proor. By unfolding and Lemma 8.48. O
2024-03-08 17:45. Page 95 of 1-109.

96

8.7.2 Check-elision: Fundamental Property
THEOREM 8.92 (CHECK-ELISION IS CORRECT FOR BINARY LR). IfT kiyy e : 7w €/, then [T by e v € : r]]g

Proor. By induction over the check-elision judgment derivation, using the compatibility lemmata. O

2024-03-08 17:45. Page 96 of 1-109.

Gradually Typed Languages Should Be Vigilant!

9 GTL

Surface language

t = x| n|i|True|False | A(x:K) — 7.t | (t,t) | tt|fstt|sndt | binoptt |if t thent elset
T = Nat | Int | Bool | tx7 | x> 7 | *

binop = sum | quotient

r = | T, (x:7)

n = N

i = Z

Int, Int if 7 =Int
A=Y (binop,T) =
Nat, Nat if 7 = Nat

2024-03-08 17:45. Page 97 of 1-109.

97

98

9.1 Universal Translation

[r/ T']e

e ifr> 1
[t/]e=

cast{rer'}e ifret/ Ar~7

T0 ~ T2 T ~ T3 T0 ~ T2 T ~ T3 T~T
T ~ % Nat ~ Int ToXT] ~ T2 XT3 T0—>T1 ~ Ty —T3 T~T 7 ~7
Nat 0 Int = Int Nat [Int = Nat

o Un—on=1Nn—r U7n
ToXT1] T2 XT3 =170] To XTq] T3

A

Il
A

TDTI:T/DT

TGT:T

7 U 7’ undefined otherwise

=T N> =T9gUn—r 13

70 [l To XT1 [l 73

ToXTlﬁT2XT3
Tﬁ*:’[
TﬁfIZT/ﬁT

TﬁTZT

7 11 7’ undefined otherwise

2024-03-08 17:45. Page 98 of 1-109.

Gradually Typed Languages Should Be Vigilant! 99

Frypit:twe

(x:7) el
Frynjx:7wx T rynin:Natwn T rkynii:lIntwi
T, (x:7) bypi t: 77 wre T kyni t1: 71w €1 T bynit2 : 12 ~ e
T ryni Ax:t) > ot 1=~ Ax:1). ([¢7 L 7]e) T Fyni (t1,t2) : 1 XT2 ~> (e1,€2)
T Funi tl:‘[—>‘["\~>el T Funi tg:‘["’vv)ez T Fynjt1 i ~w e T Funi tg:T/
T byni t1t2 27"~ app{t’}er ([r/ 7"]ez) T byni t1 B2 o % v app{x} (cast {x =+ & x} e1) [x / 7']ez
Thypit:oxXT ~e Thypit:*we Thypit:TxXT we
T byni fstt: 7~ fst{r}e T bynj fstt: # ~o fst{x} (cast {xx* < *} e) T kynisndt: 7’ ~ssnd{z'}e
Frypjt:x~we
T Fypj sndt : % ~s snd{x} (cast {xX* & x} e)
IF'rynit1:11 w1 T rynjta:m2 v e A(binop, 1 U, U) = 7 71 <! Int A1 <iint

T bunj binopty tz : '~ binope; e;

Fryniti i1 »eg Trynjt2: 2 v e

T Fyni binopty ta : T’ ~» binop ([Int /" 11]e1) ([Int / 12]e2)

T Fyni tp - Bool ~» ep Frynit1:11 w™ g Trynjt2: 2 W ez

T Fyp; if tp then ¢y else tp : 71 U1y~ if ep then ([11 U / 11]er) else ([r1 0 w / r2]e2)

2024-03-08 17:45. Page 99 of 1-109.

100

THEOREM 9.1 (UNIVERSAL TRANSLATION IMPLIES SIMPLE TYPING). IfT bypjt: T~ ethenT Fypje: 1.

Proor. Proceed by induction on the typed translation.
(x:1) el
Frynjx:7wx Trynin:Nat~n T rynii:lIntwi

These cases are all immediate.

T hynit1: 71w e T hynitz: 72w ez Thynit:txXT we Thynit:txt ~e

T Fyni (t1,t2) : 11 XT2 ~> (e, €2) T bypj fstt: 7~ fst{z}e T kypisndt: T~ snd{r'}e

These cases are all immediate by the TH applied to their premises and their corresponding typing rule in Uni.

T, (x:7) bypi t: 77 e Thynit1:T—7 w e T hynitz: 77w eg

T Fyni A(x:t) o> 't ro1 ~w Axin). ([¢0 7]e) T runititz: o~ app{’}er ([t t"']e2)
These cases proceed similarly.
First we apply the IH to all premises.
Then we either use subsumption to typecheck the body or argument respectively if the types are subtype related, or
use T-CasT if they’re instead compatible subtypes.

Finally, we use the corresponding typing rule to typecheck the elimination form.

Trynjt1:xw e Trynitr: 7 Frypjt:x~we

T byni t1 t2 @ %~ app{*} (cast {x > * & x} e1) [* ,/ T']e2 T Fynj fstt @ s~ fst{x} (cast {xx* < *} e)

Fhypjt:xwe

T Fypj sndt @ ~> snd{x} (cast {xX* & x} e)

All of these cases proceed similarly.
First, we apply the IH to all premises.
Then we typecheck the casts with T-CasT.

Finally we use the corresponding typing rule to typecheck the elimination form.

T bynit1:71 » e T bynit2 : 72 > €2 A(binop, 71 U o, 71 U p) = 7' 71 <! Int AT <t int

T Fynj binopti ty : 7~ binopey ez
By the IH, we have I Fyp; €1 : 71.
By the IH, we have I Fypi e2 : 2.
Then we can use subsumption to get both T Fypi e; : 71 U 72 and T kyp; €2 : 71 U 7.

Finally we can typecheck with T-BiNop.

2024-03-08 17:45. Page 100 of 1-109.

Gradually Typed Languages Should Be Vigilant! 101

FCryniti:imr »w e Trynjt2: 2 v e

T Fyni binopty ta : T’ ~» binop ([Int / 11]e1) ([Int /" 12]e2)
By the IH, we have I Fyp; €1 : 71.
By the IH, we have T Fyp,i ez : 72.
If r; <*Int, then [Int /' 71]e; = cast {Int < 71} e1, and by the IH we have I yp; cast {Int < 71} e : Int.
Otherwise, [Int ,/ 71]e1 = e1.
If 7y <! Int, then [Int /' 12]ez = cast {Int & 12} ey, and by the IH we have I kyp; cast {Int & 12} ez : Int.
Otherwise, [Int ,/ m2]e2 = e3.

Finally we can typecheck with T-BinoP and potentially T-SUBSUMPTION.

T Fyni tp : Bool s ¢ Trynit1:11 ™ eg Thynitz i 2w e2

T Fyniif tp then ty else ty : 71] Ty o if ep then ([] 1/ 11]e1) else ([U 1/ 12]e2)

By the IH, we have I +y,; ¢, : Bool.
By the IH, we have I Fypi e1 : 1.
By the IH, we have I i ez : 2.
If r; < 1y U 7, then by subsumption, we have I' Fypj €1 : 71 U 7.
Otherwise, by T-CasT, we have T +y,; cast {r; U2 &< 11} e1 : 71 U 7.
If 75 < 7y U 7, then by subsumption, we have I' Fypj €2 : 71 U 7.
Otherwise, by T-CasT, we have T +y,; cast {r; U 72 &< 12} ep : 71 U 2.

Finally, we can typecheck with T-IF. O

2024-03-08 17:45. Page 101 of 1-109.

102

THEOREM 9.2 (UNIVERSAL TRANSLATION IMPLIES TAG TYPING). IfT o ¢ : K~ e thenT +pg € : K.

Proor. By Theorem 9.1 and Theorem 3.1. O

9.2 Flow-Sensitive Translation

* fK<r7
r\K =
7 otherwise

2024-03-08 17:45. Page 102 of 1-109.

Gradually Typed Languages Should Be Vigilant! 103

THtRwt > T™we: 1T

(x:K) el

T Frow X => K~ x: K T Frjow n = Nat ~» n: Nat T Friow [= Int~ i Int

T, (x:K) Fpow t & T e: 7/ T FElow t1=>Tl'W>el:T{ T FElow t2=>fz'vv>ez:l'é

T rrow A(x:K) > .t =2 s> 17w A(x:K). e : 5 —>1 T Friow (t1, 2) = 11X ~> (€1, e2) : T{xré

’ ’
FCrrow t1 @ x> T w e i x> [hrlow b2 = 12 W €21 T

T Friow t1 12 = 7w app{*} e; ey : 7

T Frlow t1 = * wreg i 71 Throw 2 = 7 w ez : 12 T M*—> =% >

T briow t1 t2 = % > app{x} (cast {x > < x} e1) e2 : 7

T FRiow t1 = % wre1 i 73 Trrow 2 = T w ez : 1 TiMNs—*= 1

T bRiow t1 t2 = * ~» app{x} (cast {* > % & *} e1) ex : L

T rRjow t = X7 v e: 17”7 ThpowE = *we:T T #X% = 71Xy

T Friow fstt = 7~ fst{x} e : fst(r") T Frlow fstt = # ~» fst{x} (cast {#x* & x} e) : 11

Throw t = *we: 1 TMsXs= 1 T rrlow t = X7~ e: 7/

T Frjow fstt = %~ fst{*} (cast {sXx* < x}e): L T Frlow SNt = T~ snd{x} e : snd(r”")

F'Frlow t = *we: T T *X* =71 XT T'Frlowt = *we: 1 TM#X* =1

T Frlow SNd t = # > snd{*} (cast {xx* < x} e) : 1y T Frlow SN t = # > snd{#} (cast {xx* < %} e) : L

Thelow 1 = 71 W e 1 73 T Frlow f2 = T2 > €2 : T, A(binop, 71, 72) =7’ A(binop, 1], 75) = 7"

T Friow binopty tz = ©’ ~» binopey ey : 1”7

T FFiow tp = Bool ~» ¢, : Bool T Frlow t1 = 71 ™ €1 : TI T Frlow 12 = 72 W €2 : Té

T Friow i ep then ty else fp = 7 L1y ~> if €, then e else eg : 7] LI 75,

T FRlow tp = Bool ~» ep: L T'Frlow t1 = 71 W et TI T FRlow 2 = T2 v ez : Té

T FRlow if ty then t; else ty = 71 LU p w if ep then e else ey : L

THrowt & 1w e:

Trrow t = 7 ~we: 1’ <t Trrow t = 7 ~we: 7’ 7 £K

Trpowt &= 1w e: 1 Trrowt & K~ cast{K < [|}e: KM || n”

2024-03-08 17:45. Page 103 of 1-109.

104

Trpowt T T we:

FI-F|OWI<=’[M/>61TI ﬁ(ae,‘[’.rkﬂowt@‘[we:f’) FI-F|OWt¢=>‘[W€:T,

Thrpowt =t rwe: Trpowt =t rwe:

TtRwt =T e 1T

T Friow 11 = T1 W €1 :T{ T FElow T2 =t Tzweg:l’é rl—F|OWt<:+ (T\LTJ)X*WEZQXTZ

T Frlow (t1, ©2) <& 11 X1 ~> (€1, €2) : T{XTé T Frlow fstt & 7w fst{|[r]}e: 1 M| 7]

T brplow t =1 xx(t\ [7]) w e : X

T FRlow SNt & 7~ snd{| 7]} e: 2 M |7]

T Friow tp <+ Bool ~» ¢, : Bool Thpow t1 T T wr ey 1 7] Thpow 2 T Tw eg : 7

T Friow if € then ty else ty & 7 > if e then eq else ey : 77 LI 7)

T Friow tp <" Bool w» ep: L T Frlow 11 = er: ‘L’{ I FElow E2 =t e : Té

T Friow if ep then t1 else ty & 7~ if ¢ thenej else ey : L

Throw it & 11w e 0 7] T brow t2 &1 12w €2 1 7 A_l(binop,)=1,1 A(binop, 7], 15) = 7"’

T Friow binopty ty & v’ ~» binopej ey : 7”7

‘FI—HOWtﬁrwe‘

Trrowt = 7w eiff T Fpogw t > T e i _

‘FI-F|0Wt<=:"T'V\'>€‘

Throwt & Tw eiff TrRgw t & Tw e

‘FFF|OWt<:+TWe‘

FI-F|0Wt¢+TWeiHFFF|OWtC+TW€:_

‘I‘I—F|0Wt<=rwe‘

Trrpwt & 1w eiff Throgw t E T €1 _
For the purpose of the following proof, assume the Flow rules are used in each judgement.

LeEMMA 9.3 (TYPED FLOW TRANSLATIONS IMPLY TRUER Transient TYPING).

() fTrt=rtwe:7 thenT +e: 7 witht’ <.
2 IfTri<"r~we:7 thenTre: 7 witht <.
(3) fTrt<=trwe:7 thenTre: 7 witht <.
4 IfTrte=r~we:t thenTre: v witht <r.

2024-03-08 17:45. Page 104 of 1-109.

Gradually Typed Languages Should Be Vigilant! 105

Proor. All cases proceed by induction over their respective judgement derivations.
This is well founded by the size of the term e, with the caveat that (2) will call into (1) with the same term, but (1) will
then reduce the size before calling back into (2) (in the lambda case, through (3)).
Similarly, (3) will call into (2), but by the time it gets back to (3), the term will have been reduced in size in (1) (in the
lambda case).

And similarly, (3) will call into (4), but by the time it gets back to (3), the term will have reduced in size.

(x:K) eT
T'tx=>K~wx I'rn= Natwn F'ri=Intwi

All of the above cases follow immediately.

I'rt1 =1 we Tty => 1 we

T+ <i’1,t2> = T XTy W <81,62>

Follows immediately by the induction hypotheses.

T'Ft = *—>Tw e I'rty =17 I'rt =Xt ~e Tt =1XT ~we

T+t tg = 7~ app{*}t t2 T+ fstt = 7~ fst{x}e Trsndt = 7~ snd{x}e

All of the above cases follow similar reasoning.
We apply the induction hypothesis to each premise.
If the term being eliminated is at type L, then we use the corresponding L rule.

Otherwise we use the corresponding elimination rule with check .

THH = %~ e Tty =17 Trt=x~we

Tkt tg = *~ app{x} (cast {+ = x & *} t1) fy T+ fstt = * wo» fst{x} (cast {xx* & *} ¢)

Tt xwe

T +sndt = * ~s snd{x} (cast {xx* < =} e)

All of the above cases follow similar reasoning.
The reasoning is identical to the previous case, with the note that the boundary term also sends the type below the tag

corresponding to the kind of elimination form.

F'rti => 1 we Trty = 15w e A(binop,11,72) = T

T + binopt; ty = v’ ~» binope; ez
From (1) we get that there is a 7] < 71 such that T+ e; : 7].
From (1) we get that thereis a 7, < 72 such that T+ ez : 7.

If 7] = L or rj = 1 then were done, because A(binop, 7],75) = L.

2024-03-08 17:45. Page 105 of 1-109.

106
Otherwise, T{ = Int or Nat and Té = Int or Nat. If T{ * Té, we can use subsumption to get both e; and ey at Int to

complete the case.

Otherwise they’re both at Nat or Int, which is sufficient to complete the case.

Fl-tbﬁBOOLVv)eb Tt => 1 we Tt > 1 we

Ikif tp then t; else ty = 1y U g w if ep then e else e

By (1) we have 37, < Bool such that T + ey, : 73.
By (1) we have 371 < rsuch thatT +eq : 73.
By (1) we have 372 < rsuch thatT + ey : 2.
If 7, = L, then were done by the if bot rule.
Otherwise, we get by the if rule that T + if e, then e; else ey : 71 U 73, and that 77 Ll 72 < 7 by the fact that U is a

greatest lower bound.

I, (x:K)rt=trwe

It A(x:K) s 1.t = xs—>7~ A(x:K).e

By the lambda typing rule for truer typing, we want to show thereisa ' < rsuch that T, (x:K) Fe: 7.

This is immediate from (3) applied to the premise.

I'rt=17 we <

Trte"Twe

By (1), we have thereisa 7’/ < ¢/ such that T + ¢ : 7”/.

Since < is transitive, this completes the case.

Trt=17 we 7 4K

F'trte" Kwcast{K <[]} e

From (1) we have 7’/ < 7’ such thatT + e : 7”.
We want to show there is a tau’””” < K such that T + cast {K < |7/ [} e: /.
Set””” M|t/ MK tobe 7.
By the boundary typing rule of truer typing, this typechecks.
The last condition is that 7/ < K, which is immediate by the fast that M is the greatest lower bound.

—(Fe.Trt =1 e€) Frte"1we

Tttt rwe

Immediate by (2).

2024-03-08 17:45. Page 106 of 1-109.

Gradually Typed Languages Should Be Vigilant! 107

ltrte=rtwe
Tttt rwe

Immediate by (4).

rl—t1<:+‘f1'\~>e1 rl—t2<=+1'2'vv>ez

[k (t1, t2) & 11X12 ~ (g, €2)

Immediate by (3) and induction.

Frtet (t\ [t])x* we

I'+fstt &~ fst{|r]}e

By our induction hypothesis, we have that there is some 7/ < (7 \ [r]) X *such that T+ e : ¢’.
If 7 = L, then were done by the fst bot rule.
Otherwise, 7’ = 7; X 7, and 7] < 7\ |].
By the fst projection typing rule, we have that T + fst{|]} e : 7{ 11 |7].
It suffices to show that ‘[{ nlir] <.
If 7\ [r] = %, then | 7] < 7, which means r{ MNlr] <lr] <7

Otherwise, 7\ | 7] = 7, which means 7] < 7 and therefore 7; M [7] < 7.

It sx(t\|r]) we

I'tsndt & 7~ snd{|7]}e

Not meaningfully different from the previous case regarding fst.

rl—tb<=+BOO|'VV>eb rl—t1<:+‘["v\'>81 rl—t2<:+‘l"\~>ez

T +if e, then t1 else tp < 7~ if e then e else ez

By (3) we have 375, < Bool such that T + ¢, : 7.

By (3) we have 37y < rsuch thatT' req : 7.

By (3) we have 32 < v such thatT F ey : 2.

If 7, = L, then were done by the if bot rule.

Otherwise, we get by the if rule that T' + if e; then e; else ez : 71 U 72, and that 77 Ll 72 < 7 by the fact that U is a

greatest lower bound.

I'rth =t we Tty =t 19w ey A~ Y(binop,T’) = 11, 10

T + binopty ty & v’ ~» binope; ez

By (3) we have 3r] < ry such thatT +eq : 7].
By (3) we have dr) < 15 such that T + e; : 7.

2024-03-08 17:45. Page 107 of 1-109.

108

By the definition of A™1, either 7; = 75 = Int or 7; = 72 = Nat.
If T{ =_1or Té = 1, then were done because A(binop,], Té) =1.
Otherwise, we have 7] = Int or Nat and similarly for 7.

If 7] # 7, then we can use subsumption to get both at Int and complete the case.

Otherwise, we get that both are Int or Nat, which is sufficient to complete the case.

THEOREM 9.4 (TYPED FLow TRANSLATION IMPLIES TRUER Transient TYPING).

IfTrt=>1t~ethenTre:t.

Proor. Follows from Lemma 9.3 and T-Sus

2024-03-08 17:45. Page 108 of 1-109.

Gradually Typed Languages Should Be Vigilant! 109

10 Vigilance Results for GTLs

10.1 GTL Vigilance for Simple Typing with Natural Semantics

THEOREM 10.1 (VIGILANCE FOR SIMPLE TYPING WITH NATURAL SEMANTICS). IfT Fypi t: 7~ e then [T kgim € r]]N

Proor. By Theorem 9.1 and Theorem 5.40. O

10.2 GTL Vigilance for Tag Typing with Transient Semantics

THEOREM 10.2 (VIGILANCE FOR TAG TYPING WITH TRANSIENT SEMANTICS). IfT Fypni t : K v e then [T bag € : K]]T

Proor. By Theorem 9.2 and Theorem 7.4. O

10.3 GTL Vigilance for Truer Transient Typing with Transient Semantics

THEOREM 10.3 (VIGILANCE FOR TRUER TYPING WITH TRANSIENT SEMANTICS). IfT biry t: 7~ e then [T by € r]]T

Proor. By Theorem 9.4 and Theorem 6.49. O

2024-03-08 17:45. Page 109 of 1-109.

	Contents
	1 Common Definitions
	1.1 Evaluation Language Definitions
	1.2 Operational Semantics
	1.3 Store-Based Evaluation Language Definitions
	1.4 Store-Based Operational Semantics
	1.5 Store-Based Operational Semantics Example
	1.6 Operational Semantics Simulation Result

	2 Simple Typing
	2.1 Simple Definitions

	3 Tag Typing
	3.1 Definition
	3.2 Simple Typing Implies Tag Typing

	4 Truer Transient Typing
	4.1 Definition
	4.2 Simple Typing Implies Truer Transient Typing
	4.3 Tag Typing Implies Truer Transient Typing

	5 Vigilance for Simple Typing
	5.1 Vigilance Logical Relation for Simple Typing
	5.2 Vigilance Fundamental Property for Natural with Simple Typing

	6 Vigilance for Truer Typing
	6.1 Vigilance Logical Relation for Truer Typing
	6.2 Vigilance Fundamental Property for Transient with Truer Transient Typing

	7 Vigilance for Tag Typing
	7.1 Vigilance Logical Relation for Tag Typing
	7.2 Vigilance Fundamental Property for Transient with Tag Typing

	8 Contextual equivalence
	8.1 Contextual Equivalence Logical Relation—No Store
	8.2 Context typing
	8.3 Contextual equivalence statement
	8.4 Binary relation—Proofs
	8.5 Context relation—Proofs
	8.6 Check optimization
	8.7 Check-elision—Proofs

	9 GTL
	9.1 Universal Translation
	9.2 Flow-Sensitive Translation

	10 Vigilance Results for GTLs
	10.1 GTL Vigilance for Simple Typing with Natural Semantics
	10.2 GTL Vigilance for Tag Typing with Transient Semantics
	10.3 GTL Vigilance for Truer Transient Typing with Transient Semantics

